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ABSTRACT

SYSTEMATIC IMPROVEMENTS OF AB-INITIO IN-MEDIUM
SIMILARITY RENORMALIZATION GROUP CALCULATIONS

By

Titus Dan Morris

The In-Medium Similarity Renormalization Group (IM-SRG) is an ab initio many-body

method that has enjoyed increasing prominence in nuclear theory, due to its soft polynomial

scaling with system size, and the flexibility to target ground and excited states of both closed-

and open-shell systems. Despite many successful applications of the IM-SRG to microscopic

calculations of medium-mass nuclei in recent years, the conventional formulation of the

method suffers a number of limitations. Key amongst these are i) large memory demands

that limit calculations in heavier systems and render the calculation of observables besides

energy spectra extremely difficult, and ii) the lack of a computationally feasible sequence of

improved approximations that converge to the exact solution in the appropriate limit, thereby

verifying that the IM-SRG is systematically improvable. In this thesis, I present a novel

formulation of the IM-SRG based on the Magnus expansion. I will show that this improved

formulation, guided by intuition gleaned from a diagrammatic analysis of the perturbative

content of different truncations and parallels with coupled-cluster theory, allows one to bypass

the computational limitations of traditional implementations, and provides computationally

viable approximations that go beyond the truncations used to date. The effectiveness of the

new Magnus formulation is illustrated for several many-nucleon and many-electron systems.
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Chapter 1

Introduction

1.1 Brief History

The quest to predict and understand the properties of nuclei starting from the underlying

nuclear forces goes back nearly 60 years, dating back to the pioneering work of Brueckner,

Bethe, and Goldstone [28–30]. In contrast predictive and accurate ab initio many-body

calculations were commonplace in quantum chemistry by the 1980s [31]. Progress was not

slowed there by the challenging aspects of the nuclear problem like the lack of a consistent

theory for the strong inter-nucleon interactions, and the need to perform computationally

expensive (and uncontrolled) resummations to handle the non-perturbative aspects of the

problem. Consequently, for many years nuclear ab initio theory languished as a predictive

force, and could only explain in semi-quantitative terms how successful phenomenology such

as the shell model and Skyrme energy-density functionals are linked to the underlying nuclear

interactions.

As experimental efforts have shifted towards exotic nuclei, there has been an increased

urgency to develop reliable ab initio approaches to counter the inherent limitations of phe-

nomenology. As evidenced by Fig. 1.1, tremendous progress has been made in recent years,

where the interplay of different threads, namely rapidly increasing computational power,

effective field theory (EFT) descriptions of inter-nucleon interactions, and renormalization

group (RG) transformations, have enabled the development of new many-body methods and
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the revival of old ones to successfully attack these problems [27, 32–35]. Remarkably, it

is now possible to perform quasi-exact calculations including three-nucleon interactions of

nuclei up to carbon or oxygen in quantum Monte Carlo (QMC) and no-core shell model

(NCSM) calculations, and N = Z nuclei up through 28Si in lattice effective field theory

with Euclidean time projection [12, 36–38]. Moreover, a host of approximate (but systemat-

ically improvable) methods such as Coupled Cluster (CC), self-consistent Green’s functions

(SCGF), auxiliary field diffusion Monte Carlo (AFDMC), and the IM-SRG have pushed the

frontiers of ab initio theory well into the medium-mass region, opening up new directions

to the challenging terrain of open-shell and exotic nuclei [21, 23, 24, 26, 39–46], with recent

highlights in the calcium isotopes [22, 47].

RG methods have played a prominent role in the resurgence of ab initio theory. A key to

optimizing calculations of nuclei is a proper choice of degrees of freedom. While Quantum

Chromodynamics (QCD) is the underlying theory of strong interactions, the most efficient

low-energy degrees of freedom for nuclear structure are the colorless hadrons of traditional

nuclear phenomenology. But this realization is not enough. For low-energy calculations to

be computationally efficient (or even feasible in some cases) we need to exclude or, more

generally, to decouple the high-energy degrees of freedom in a manner that leaves low-energy

observables invariant.

Progress on the nuclear many-body problem was hindered for decades because nucleon-

nucleon (NN) potentials that reproduce elastic scattering phase shifts typically have strong

short-range repulsion and strong short-range tensor forces. This produces substantial cou-

pling to high-momentum modes, which is manifested as strongly correlated many-body wave

functions and highly nonperturbative few- and many-body systems. For many years, the only

viable option to handle these features in a controlled manner was to use quasi-exact methods
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Figure 1.1: Taken from Ref. [11]. The chart of nuclides and the reach of ab initio calculations
in (a) 2005 and (b) 2015. Nuclei (including potentially unbound isotopes) for which ab initio
calculations based on high-precision nuclear interactions exist are highlighted. Essentially all
of the 2015 calculations include 3N forces. We note that the figure is for illustrative purposes
only, and is based on the authors’ potentially non-exhaustive survey of the literature.
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such as QMC or NCSM, which limited the reach of ab initio calculations to light p-shell nu-

clei. Powerful methods that scale favorably to larger systems like CC and many-body pertur-

bation theory (MBPT) were largely abandoned in nuclear physics, but exported to quantum

chemistry, where they enjoyed immediate success and quickly became the gold-standard for

ab initio calculations[48–50]. The success of CC and related methods in quantum chemistry

stems from the fact that Hartree-Fock is a relatively good starting point due to the relatively

weak correlations induced by the Coulomb interaction, in stark contrast to the nuclear case.

Additionally, the nuclear case is beset with difficulties with the quality of nuclear forces, and

other issues that plague self-bound systems like center of mass contamination.

New approaches to nuclear forces grounded in RG ideas and techniques have been de-

veloped in recent years that effectively make the nuclear many-body problem look more like

quantum chemistry [33, 37, 51–55]. The RG allows continuous changes in “resolution” that

decouple the troublesome high-momentum modes and can be used to evolve interactions

to nuclear structure energy and momentum scales while preserving low-energy observables.

Such potentials, known generically as “low-momentum interactions,” are more perturbative

and generate much less correlated wave functions. This has played a major role in expand-

ing the reach of ab initio calculations to medium-mass nuclei, since methods that exhibit

polynomial scaling can now be converged in manageable model spaces. See Refs. [33, 56, 57]

for recent reviews on the use of RG methods in nuclear physics.

As will be shown in the following, the IM-SRG approach extends the RG notion of

decoupling to the many-body Hilbert space by formulating “in-medium” flow equations, the

solution of which is equivalent to the partial diagonalization or block-diagonalization of the

many-body Hamiltonian [21, 24, 33, 39, 58]. Because of its favorable polynomial scaling

with system size, and the flexibility to target ground and excited states of both closed-
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and open-shell systems, the IM-SRG provides a powerful ab initio framework for calculating

medium-mass nuclei from first principles that is grounded in modern RG principles.

Despite the inherent strengths of this method, it suffers from several shortcomings. Key

amongst these are i) the linear scaling with each additional observable one wishes to calculate,

ii) the need to solve a large set of coupled differential equations to high numerical accuracy,

iii) and the inability to approximate the effect of omitted terms in the simplest truncations

of the IM-SRG equations. The aim of this thesis is to show how a novel reformulation of

the IM-SRG using Magnus expansion techniques allows one to circumvent all three of these

weaknesses, at least for closed-shell systems. I will show that the IM-SRG, when coupled with

a true matrix exponential formalism via the Magnus expansion, provides a controlled, non-

perturbative scheme to find the ground states of nuclei and of quantum chemistry systems.

Moreover, there are promising indications that the methods laid out in this thesis will provide

important tools for deriving effective valence shell model Hamiltonians and operators from

the underlying nuclear forces, opening the door to an ab initio description of open-shell,

medium-mass nuclei.

The rest of this thesis is organized as follows. In Chapter 2, I start with a brief review

of many-body perturbation theory (MBPT) and CC theory, as many of the improvements

described in this thesis are based on analyzing the perturbative content of the IM-SRG and

understanding the similarities and differences from CC theory. In Chapter 3, the basic ele-

ments of the IM-SRG method are reviewed in some detail, and a sampling of its successes

in nuclei are presented. Note that the diagrammatic analysis of the perturbative content

of the IM-SRG in Section 3.5 is especially important. In addition to guiding many of the

improvements detailed in Chapter 5, this was my main contribution to the recent review

article [11] that much of the material in Chapter 3 is based on. Chapter 4 describes the
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crucial reformulation of the IM-SRG equations using the Magnus expansion, and shows how

this eliminates many of the computational limitations faced by the conventional formulation

due to large memory overhead. Chapter 5 documents how the simplest IM-SRG(2) and

MAGNUS(2) truncations fail in certain quantum chemistry systems, and uses the perturba-

tive analysis of Section 3.5 to motivate improved truncations, which are then validated for

several electronic and nuclear systems. Chapter 6 highlights some interesting open topics

that are presently “in development”, such as a computationally inexpensive method to per-

form calculations in Brueckner orbitals and extensions to more challenging open-shell and

multi-reference problems. Finally, conclusions are presented in Chapter 7.
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Chapter 2

The Many-Body Problem

In low energy nuclear systems, quantum chemistry, and solid state physics, one wishes to

be able to understand emergent phenomena from a microscopic Hamiltonian. Despite the

ambiguity in the inter-nucleon interactions arising from scheme and scale dependence, the

basic mechanics for solving all three systems are the same once a given interaction is settled

on. However, because solving the A-body Schrödinger equation in an exact and straight-

forward manner leads to a factorially scaling problem in A, approximate solutions are the

only way to move forward. A variety of different approximate methods have shown promise

in recent years, but in order to motivate both the strengths and deficiencies of the IM-SRG

method, and the to-be-presented Magnus formulation of it, we will begin by reviewing the

basics of the many-body problem and two established methods for approximately solving

it. The first, and most well known of these is MBPT, which will be covered in Section 2.3.

Further because of the strong relationship between IM-SRG and CC theory, and how CC

theory motivates improvements in the IM-SRG method, we will also present the important

elements of CC theory in Section 2.4.

2.1 Many-Body Schrödinger Equation

The main problem in non-relativistic many-body physics is to find the solution of the

Schrödinger equation for a system of A interacting elementary particles, generally fermions.
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One can write down the time-independent ground state solution as

H |Ψ0〉 = E0 |Ψ0〉 . (2.1)

For the purposes of this work, it is useful to start with a Fock-space second quantized

Hamiltonian

H =
∑
pq

Tpqa
†
paq +

1

4

∑
pqrs

V
(2)
pqrsa

†
pa
†
qasar +

1

36

∑
pqrstu

V
(3)
pqrstua

†
pa
†
qa
†
rauatas , (2.2)

where V
(2)
pqrs and V

(3)
pqrstu are antisymmetrized two- and three-body interaction matrix ele-

ments, and a complete basis set of Slater determinants for the A-body Hilbert space as

|Φ{p1 . . . pA}〉 =
A∏
k=1

a
†
pk
|0〉, (2.3)

given that the single-particle basis state to which the creation operators refer to are complete

in the one-body space. It is clear then that any A-body state can be written in terms of

these Slater determinants, and in particular the true ground state has the form

|Ψ0〉 =
∑

p1<...<pA

Cp1...pA |Φ{p1 . . . pA}〉 . (2.4)

This expansion demonstrates what was mentioned earlier, that a straightforward variational

calculation of the Cp1...pA ’s becomes intractable with increasing A. If the single particle

basis is truncated at n orbitals and symmetry is ignored, then there are
(n
A

)
Cp1...pA ’s

which must be determined. Even for very moderate systems being optimized on a very large

computational facility, this procedure is intractable. Figure 2.1 demonstrates the feasibility
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Figure 2.1: Matrix dimension versus Nmax for stable and unstable Oxygen isotopes. The
vertical red line signals the boundary, beyond which one might expect reasonable convergence
with respect to Nmax. The horizontal lines show the computational power of a facility
expected to conduct these diagonalizations. Figure taken from Ref. [12].

of calculating the oxygen isotopes in a straightforward way taken from [12].

There are some common conventions which will be worthwhile to introduce in order to

be able to discuss MBPT, CC theory, and the IM-SRG in the next chapter. First I will

introduce the concept of an adequately chosen reference state, which will lead immediately

to the concept of normal ordering, which is invaluable for the purposes of bookkeeping for

the methods discussed in this work.

2.2 Normal Ordering

Reference states are a common ingredient to most many-body methods. Usually, their

function is to fix certain characteristics of the system we want to describe, e.g., the proton
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and neutron numbers of a nucleus, and to provide a starting point for the construction of

a many-body Hilbert space that is superior to the particle vacuum. Describing many-body

states as excitations with respect to a suitably chosen reference state allows us to account for

the characteristic energy scales of the target nucleus, and introduce systematic truncation

schemes based on this information. It also suggests the use of normal-ordering techniques

in a natural fashion (cf. 2.2). Using a Slater determinant as the reference state is a suitable

choice for systems with a large gap in their excitation spectrum, e.g., closed-shell nuclei.

Among the Slater determinants, those that satisfy the Hartree-Fock conditions for a given

system are the most natural choices (cf. Sec. 3.3), because they minimize both the mean-field

energy and the beyond mean-field correlation energy in a variational sense.

Once a suitable single reference |Φ〉 is chosen, one can invoke the concept of normal

ordering. As mentioned, this leads to a natural organization of the complete A-body states

into their level of excitation away from |Φ〉. Normal-ordered operators can then be defined

by beginning with the most simple of these,

a
†
paq ≡:a

†
paq : + a

†
paq , (2.5)

where the contraction is related to the reference state |Φ〉:

a
†
paq ≡ 〈Φ| a†paq |Φ〉 ≡ ρqp = δpqnp , (2.6)

where np is 1 or 0 depending on occupation in |Φ〉. This generalizes easily to A-body
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operator:

a
†
p1
. . . a

†
pN
aqN . . . aq1

≡:a
†
p1
. . . a

†
pN
aqN . . . aq1 :

+ a
†
p1
aq1 :a

†
p2
. . . a

†
pN
aqN . . . aq2 : −a†p1aq2 :a

†
p2
. . . a

†
pN
aqN . . . aq3aq1 : + singles

+

(
a
†
p1
aq1a

†
p2
aq2 − a

†
p1
aq2a

†
p2
aq1

)
:a
†
p3
. . . a

†
pN
aqN . . . aq3 : + doubles

+ . . .+ full contractions . (2.7)

It is clear that 〈Φ| :a†paq : |Φ〉 must vanish, and a similar finding is true for general normal-

ordered operators in the reference state |Φ〉

〈Φ| : a†p1 . . . ap1 : |Φ〉 = 0 . (2.8)

It is then possible to invoke Wick’s theorem (see e.g. [16]), which is a simple ramification of

the definition of normal ordering in Eq. (2.7). This allows for the expansion of products of

two or more normal ordered operators:

:a
†
p1
. . . a

†
pN
aqN . . . aq1 ::a

†
r1
. . . a

†
rM

asM . . . as1 :

= (−1)M ·N :a
†
p1
. . . a

†
pN
a
†
r1
. . . a

†
rM

aqN . . . aq1asM . . . as1 :

+ (−1)M ·Na†p1as1 :a
†
p2
. . . a

†
rM

aqN . . . as2 :

+ (−1)(M−1)(N−1)aq1a
†
r1

:a
†
p1
. . . a

†
rM

aqN . . . al1 :

+ singles + doubles + . . . . (2.9)

The phases appear as the a
†
r operators are anti-commuted past aq. Since |Φ〉 is an A-body
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state and not the true vacuua, there is a new type of contraction,

apa
†
q ≡ 〈Φ| apa†q |Φ〉 = δpq − ρpq , (2.10)

as expected from the basic fermionic anti-commutator algebra. This provides a robust frame-

work for evaluating the product of normal ordered operators with the least amount of terms.

Also beneficial, is that it motivates a diagrammatic formalism that makes evaluation of terms

intuitive. An important finding from Wick’s theorem that will be relevant in the formulation

of the IM-SRG is that a product of normal-ordered M and N -body operators has the general

form

AMBN =
M+N∑

k=|M−N |
C(k) . (2.11)

Exploiting normal ordering, one can exactly rewrite the hamiltonian Eq. (2.2),

H = E +
∑
pq

fpq :a
†
paq : +

1

4

∑
pqrs

Γpqrs :a
†
pa
†
qasar : +

1

36

∑
pqrstu

Wpqrstu : a
†
pa
†
qa
†
rauatas : .

(2.12)

The individual normal-ordered contributions in Eq. (2.12) are then given by

E =
∑
i

〈i|T |i〉+
1

2

∑
ij

〈ij|V (2) |ij〉+
1

6

∑
ijk

〈ijk|V (3) |ijk〉 , (2.13)

fpq = 〈p|T |q〉+
∑
i

〈pi|V (2) |qi〉+
1

2

∑
ij

〈pij|V (3) |qij〉 , (2.14)

Γpqrs = 〈pq|V (2) |rs〉+
∑
i

〈pqi|V (3) |rsi〉 , (2.15)

Wpqrstu = 〈pqr|V (3) |stu〉 . (2.16)

I use the convention where i, j, . . . refer to occupied orbitals in |Φ〉, a, b, . . . refer to
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unoccupied orbitals in |Φ〉, and p, q, . . . refer to either. In Eqs. (2.13)–(2.15), it is important

to note that the zero-, one-, and two-body parts of the normal-ordered hamiltonian all

contain contributions from the higher-body free-space interaction. This suggests that the

dominant effects of computationally expensive three- and higher-body interactions can be

included in two- and lower-body operators via normal ordering.

2.3 Many Body Perturbation Theory

Armed with a quality reference state |Φ〉, it is often possible to expand the full solution and

properties around this reference. To do so is to follow the path of many body perturbation

theory (MBPT). I present here a brief summary of the material provided in [16].

The Hamiltonian is first partitioned into a diagonal and interaction part

H |Ψ0〉 = (H0 +HI) |Ψ0〉 = E0 |Ψ0〉 (2.17)

where HI = H −H0, and the zero-order solutions based on H0 are known

H0 |Φ〉 = E
(0)
0 |Φ〉. (2.18)

Multiplying Eq (2.17) on the left with the reference 〈Φ0| one arrives at

E
(0)
0 + 〈Φ|HI |Ψ0〉 = E0 〈Φ |Ψ0〉. (2.19)

Invoking intermediate normalization where 〈Φ |Ψ0〉 = 1, one arrives at the working expres-
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sion for the correlation energy,

∆E = E0 − E
(0)
0 = 〈Φ|HI |Ψ0〉. (2.20)

Following the usual prescription to generate the different versions of perturbation theory

(e.g. Rayleigh-Schrödinger and Brillouin-Wigner), one arrives at the infinite order solution

|Ψ0〉 =
∞∑
m=0

{R0(ζ)(HI − E0 + ζ)}m |Φ〉, (2.21)

with the resolvent operator

R0(ζ) =
Q

ζ −H0
(2.22)

where Q projects onto the orthogonal complement of |Φ〉. This immediately yields a per-

turbative expansion for the energy of

∆E =
∞∑
m=0

〈Φ|HI{R0(ζ)(HI − E0 + ζ)}m |Φ〉. (2.23)

For the remainder of this work we make the choice ζ = E
(0)
0 which corresponds to the

size extensive Rayleigh-Schrödinger perturbation theory. We use this decision to rewrite

R0(E
(0)
0 ) as just R0.

∆E =
∞∑
m=0

〈Φ|HI{R0(HI −∆E)}m |Φ〉 (2.24)

Thus, as long as H0 and its spectrum can be found, Eq. (2.24) can be solved order by order.

The lack of small expansion parameter in this formalism indicates that convergence is not

guaranteed. Evaluation of terms in Eq. (2.24) is aided by the help of diagrammatic methods

applicable when working with a normal ordered Hamiltonian. The rules for interpreting
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diagrams are found both in Appendix C and Ref [16]. For many systems, it is necessary to

find non-perturbative methods that resum certain classes of perturbative diagrams to infinite

order to achieve adequate accuracy. Size extensivity is guaranteed in Rayleigh-Schrödinger

perturbation theory, as all unlinked diagrams appearing in the energy cancel order-by-order

[59].

As we will see in Chapter 5, the intuition gleaned from diagrammatic MBPT will be

crucial in developing systematically improvable IM-SRG truncations. As an example, the

first non-trivial contribution to the energy that arises at second order in MBPT has the form

∆E[2] = 〈Φ|{HIR0HI}C |Φ〉 , (2.25)

where the subscripted C represents that only connected terms contribute. Plugging in the

normal ordered operators in Eqs. (2.14)–(2.16) for HI , the expanded version of Eq. (2.25)

becomes

∆E[2] =
∑
ia

fiafai
∆ia

+
1

2!2

∑
ijab

ΓijabΓabij
∆ijab

+
1

3!2

∑
ijkabc

WijkabcWabcijk

∆ijkabc
(2.26)

where

∆i1...iNa1...aN
= E

(0)
0 − 〈Φa1...aN

i1...iN
|H0 |Φ

a1...aN
i1...iN

〉. (2.27)

Similar analysis can be carried out for each order, but the cost of calculating diagrams even

at fourth order scales similarly to much higher quality many-body methods.
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Figure 2.2: Diagram demonstrating the diagramatic form of Eq. (2.26). The dashed line
indicates the resolvent operator R0.

2.4 Coupled Cluster Theory

As mentioned above, it is often impossible to arrive at a satisfactory energy or wavefunction

from low-order perturbation theory, necessitating infinite-order partial resummations of Eq.

(2.21) and (2.24). One such resummation is CC theory, which has a distinguished history

in quantum chemisty, and is commonly regarded as the ab initio method with the optimal

compromise between accuracy and computational cost. Although first contemplated by nu-

clear physicists, the “hardcore” inter-nucleon interactions used at that time made it difficult

to apply CC theory to nuclei without performing a complicated rearrangement of the CC

equations to adequately capture the strong short range correlations [48–50, 60]. In chem-

istry it has become a mature field, most notably because of its ease of use, and its ability

to approximate more exact CC methods from less expensive ones without reverting to the

more exact methods cost. These features will be briefly reviewed in the following sections.
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2.4.1 Exponential Ansatz

CC theory relies first and foremost on the ability to parametrize the exact wavefunction as

the result of an exponential operator acting on a reference Slater determinant |Φ〉,

|ΨCC〉 = eT |Φ〉, T = T1 + T2 + . . . , (2.28)

with cluster operators

T1 =
∑
ai

tai :a
†
aai : , (2.29)

T2 =
1

4

∑
abij

tabij :a
†
aa
†
bajai : . (2.30)

...

It can be shown via the linked cluster theorem that |ΨCC〉 is an exact reformulation of the

MBPT wavefunction, and thus the CC ansatz is an exact reformulation of the Schrödinger

equation if T is not truncated [16, 61]. The energy and coefficients of the cluster operators

are determined by solving the algebraic system of equations

〈Φ| e−THeT |Φ〉 = E0 , (2.31)

〈Φai | e
−THeT |Φ〉 = 0 , (2.32)

〈Φabij | e
−THeT |Φ〉 = 0 , (2.33)

...
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where |Φai 〉, |Φ
ab
ij 〉, . . ., are particle-hole excited Slater determinants. The full algebraic forms

of Eqs. 2.31-2.33 can be found in Ref. [16]. It is clear that if these equations are satisfied, the

similarity transformed hamiltonian H̄ = e−THeT no longer connects |Φ〉 to excited Slater

determinants. It is also important to note that the similarity transformation is non-unitary,

which makes the similarity transformed Hamiltonian H̄ non-Hermitian.

Solving for the higher-body amplitudes like those found in Eq. 2.31-2.33 becomes in-

creasingly more expensive for each higher-body cluster that is solved for. Thus it becomes

necessary to truncate the cluster amplitudes, meaning the method becomes an approximate

solution to the Schrödinger equation. It is most common then to solve these equations ap-

proximately for only Tn with n < mA where mA < A. Solving for up to T1, T2, T3, . . . has

commonly become known as singles (S), doubles (SD), triples(SDT), etc. Most commonly,

T is approximated at the T1 + T2 level, which is known as CC singles + doubles (CCSD),

which has a cost of n2
on

4
u where no and nu are the number of occupied and unoccupied single

particle orbitals in the calculation.

One of the most important implications of using the CC ansatz is that of relative insen-

sitivity to the choice of reference. According to a theorem by Thouless [62], any two Slater

determinants |ΦA〉, |ΦB〉 that are non-orthogonal and therefore have non-vanishing overlap

are related (up to a normalization constant and phase factor) by a similarity transformation:

|ΦB〉 ∼ exp

(∑
ai

tai :a
†
aai :

)
|ΦA〉 ≡ eT

(1)
|ΦA〉 . (2.34)

Since the Ti are only defined in terms of particle-hole excitation operators, it is easy to see
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that cluster operators of different particle rank commute,

[Ti, Tj ] = 0 , (2.35)

because contractions between particle creation and hole annihilation operators vanish. Con-

sequently, the CCSD wave function can be written as

|ΨCCSD〉 ≈ eT1+T2 |Φ〉 = eT2eT1 |Φ〉 , (2.36)

and thus Thouless’ theorem (2.34) is directly built into the CC formalism. The single Slater

determinant mapped to by eT1 |Φ〉 will in general be of the better Slater determinants that

can be chosen, regardless of the original choice of |Φ〉.

It has been shown that the CCSD approximation contains certain classes of perturbative

diagrams like the so-called particle-particle ladders, and hole-hole ladders summed to infinite

order [63]. Further, the particle-hole ladders, and their interference with particle-particle and

hole-hole ladders are included as well. This separates it from more traditional resummation

methods like the Brueckner Hartree-Fock formalism or the Random Phase Approximation

[63, 64]. The perturbative content of the CCSD method is important to note now, as the

approximations to triples that are forthcoming were originally motivated by a desire to

increase the order by order accuracy of the method [16]. A close inspection of the CCSD

energy shows that it is complete through third order in MBPT, and is incomplete with

respect to MBPT beginning with connected triple excitations at fourth order.
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2.5 Approximate Triples

Since full CCSDT is computationally expensive even when using just a two-body Hamilto-

nian, scaling at n3
on

5
p, various approximations have been developed which take into account

the leading effects of triples on CCSD. In this thesis, I will focus on the non-iterative triples

correlations which are calculated using fully converged singles and doubles amplitudes in the

absence of T3. These approximations share strong parallels both in form and philosophy to

the three-body IM-SRG approximations made in this thesis in Chapter 5.

2.5.1 CCSD(T)

The most commonly used CC method in quantum chemistry and nuclear physics is CC

singles doubles plus perturbative triples, and denoted as CCSD(T) [65]. Here I will only

present an earlier version of this approximation, referred to as CCSD[T] or CCSD+T. If

starting with a Hartree-Fock reference state, the required diagrams to restore fourth order

MBPT content are found in CCSD[T]. In this approximation, T3 is approximated correctly

up to second order in MBPT. This allows for an energy correction correct through fourth

order. T3 has the diagrammatic form found in Fig. 2.3, and algebraic form of

Tabcijk ≈ 〈Φabcijk |{R0ΓT2}C |Φ〉. (2.37)

It can be shown that all fourth order triple excitation diagrams found in Fig. 3.16 can be

found in CC theory as

∆ECCSD[T ] =
1

3!2

∑
abcijk

|Tabcijk|2∆ijkabc , (2.38)
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Figure 2.3: Diagrams demonstrating the approximate T3 constructed from converged T2
amplitudes in the CCSD[T] energy correction. The dashed line represents the resolvent
operator R0 from perturbation theory.

where ∆ijkabc = εi + εj + εk − εa− εa− εb, and εi = fii. It is important to note that Tabcijk

must be made antisymmetric before use in (2.38). By inspecting the diagrams in Fig. 2.3 and

counting the number of particle and hole lines, one arrives at the n3
on

4
u scaling usually quoted

by a perturbative triples calculation. This will be the same scaling for all non-iterative triples

within CC theory. The addition of the ∆ECCSD[T ] term to CCSD calculations improves

agreement with exact results at equilibrium geometries of molecules dramatically, but usually

begins to fail at stretched geometries even for single bond-breaking in chemistry results, and

more generally any time the system exhibits a strong multi-reference character [66]. The

situation is better, but still qualitatively similar for CCSD(T). For nuclear systems, it is

expected that these corrections behave similarly, but the issue of explicit three-body forces

makes the issue somewhat less transparent [67].
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2.5.2 Λ-CCSD[T]

One important development in CC theory is its recasting as the solution to a bi-variational

minimization [16]. This involves identifying the right and left eigenvector of the similarity

transformed Hamiltonian. The left eigenstate can be written as

〈Φ|(1 + Λ), Λ = λ1 + λ2 + . . . , (2.39)

where the different λn are different rank de-excitation operators defined as

λ1 =
∑
ai

λia :a
†
iaa : , (2.40)

λ2 =
1

4

∑
ijab

λijab :a
†
ia
†
jabaa : . . . .

This yields the formal CC energy functional as

EΛ−CC = 〈Φ|(1 + Λ)(e−THeT )C |Φ〉. (2.41)

If the Λ and T are truncated at the same level, for example at the singles and doubles level,

then the Eq. 2.31-2.33 result as the stationarity conditions for the functional as λia and λijab

are varied. Additionally, one arrives at a set of Λ equations if Tia and Tijab are varied. This

not only provides an avenue for generating observables, but also for further approximating

the effect of higher order cluster and Λ amplitudes. Again, isolating the perturbative content

to restore fourth order terms to a Λ-CCSD energy calculation,

∆EΛ−CCSD[T ] = 〈Φ|Λ2(ΓT3)C |Φ〉, (2.42)
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where T3 is approximated in the same way as it was for CCSD[T]. This correction allows

for the inclusion of different diagrams than CCSD[T], and generally behaves better when

describing bond breaking, but again breaks down for systems with a strong multi-reference

character [16, 68, 69].

2.5.3 Completely Renormalized CC Methods

Arguably the most complete non-iterative method for approximating full CCSDT from CCSD

methods is the recent formulation of completely renormalized CC commonly labelled as CR-

CCL or just CR-CC from now on in this work [8]. CR-CCL improved upon earlier completely

renormalized methods such as CR-CCSD(T) which performed much better than the non-

iterative triples presented above, but were not rigorously size extensive [70–72]. We will

follow the presentation found in Ref.[8]. Here we must define some notation for expedience.

As mentioned before, the cluster amplitude is truncated at some excitation rank. If we

denote this by the number mA, then T (ma) =
∑mA
n=1 Tn, and H̄(mA) = e−T (mA)HeT (mA).

CR-CC methods dispense with purely perturbative arguments and instead use a moment

expansion combined with a novel parametrization of the true full CI “bra” vector

〈Ψ0|H = E0 〈Ψ0| = E0 〈Φ|Le−T (mA). (2.43)

It is important here to notice that although the L is similar in form and function to 1 + Λ

from the previous section, they are not identical. L is defined for higher-body components

above mA, whereas 1 + Λ is only defined up to the same level of approximation as T in the

Λ − CC theory. This would make it unfeasible to incorporate a residual three-body force

in either of the previous approximate triples treatments. This parametrization leads to the
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asymmetric expression for the true ground state energy

E0 =
〈Φ|Le−T (mA)HeT (mA) |Φ〉
〈Φ|Le−T (mA)eT (mA) |Φ〉

= 〈Φ|LH̄(mA) |Φ〉 . (2.44)

This allows for insertion of completeness in terms of excited Slater determinants to arrive at

E0 =
A∑
n=0

∑
i1<...<in
a1<...<an

〈Φ|L |Φa1...an
i1...in

〉 〈Φa1...an
i1...in

|H̄(mA) |Φ〉 = E(mA) + δ(mA, A) . (2.45)

The level of excitations inserted between L and H̄(mA) can be truncated at another level

mB . If we also make the idenfication of the “moments” of the similarity transformed matrix

element asMa1...an
i1...in

(mA) = 〈Φa1...an
i1...in

|H̄(mA) |Φ〉. This allows the CR-CC energy correction

to be written as a function of mA and mB ,

δ(mA,mB) =

mB∑
n=mA+1

∑
i1<...<in
a1<...<an

l
a1...an
i1...in

Ma1...an
i1...in

(mA). (2.46)

Having given the formalism underpinning CR-CC methods, I now turn to the relevant CR-

CC(2,3) method. That means that L ≈ 1 + ΛCCSD + L3. The L3 amplitudes are approxi-

mated by multiplying Eq. (2.43) on the right by eT (CCSD) |Φabcijk〉, yielding

〈Φ|(1 + ΛCCSD)H̄(CCSD) |Φabcijk〉+ 〈Φ|L3H̄(CCSD) |Φabcijk〉 = E0l
abc
ijk . (2.47)

If the further approximation is made that 〈Φdeflmn|H̄(CCSD) |Φabcijk〉 ≈ 0 unless ijk = lmn

and abc = def , and that E0 ≈ ECCSD, then the labcijk can be isolated using only known
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quantities to yield

labcijk(CCSD) ≈
〈Φ|(1 + ΛCCSD)H̄(CCSD) |Φabcijk〉

ECCSD − 〈Φabcijk |H̄(CCSD) |Φabcijk〉
. (2.48)

Full CCSDT tends to track full CI results quite well even for systems with a moderately large

multi-reference character. CR-CC(2,3) seems to give comparable accuracy to full CCSDT,

while the previous two fail to qualitatively reproduce full CCSDT in these cases [8]. This

ability of CR-CC(2,3) to mimic full CCSDT despite scaling in the same manner as CCSD(T)

can be tracked down to two main features. The first improvement enters by updating the

definition of “diagonal” than is used in the energy denominators of both CCSD(T) and Λ-

CCSD(T) corrections. The denominator of the first two methods are just the Möller-Plesset

denominators of the bare HF energies. In the completely renormalized theory presented,

one instead uses the energy denominator associated with the full similarity transformed

Hamiltonian, and diagonal two-body terms are included in the denominators. In Chapters

5 and 6, results will be presented with the label CCSD(2)T , which is equivalent to CR-

CC(2,3), where the denominator is made up of only one-body terms from the full similarity

transformed Hamiltonian. Secondly, the three-body “moment” of the CR-CC(2,3) correction

contains many more topologies not found in the previous methods, as they were only linear

in the T2 amplitudes.
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Chapter 3

In-Medium Similarity

Renormalization Group

As discussed in Sec. 1.1, the rapid progress in ab initio nuclear structure in recent years has

been driven in large part by the development of renormalization group methods to produce

soft “low-momentum” interactions from underlying “hard” interactions without distorting

low-energy observables. Soft potentials are highly advantageous for many-body methods that

rely on expanding wave functions in a finite basis of localized single-particle orbitals, as the

convergence of calculations with respect to basis size is dramatically improved. Moreover,

since strong short-range correlations are smoothed out, Hartree-Fock becomes a reasonable

zeroth order starting point for nuclei, making methods like MBPT and coupled cluster theory

based on building correlations on top of a “simple” reference state attractive methods for

nuclear structure calculations.

As will be shown in the following, the IM-SRG approach extends the RG notion of

decoupling low- and high-momentum degrees of freedom to the many-body Hilbert space by

formulating “in-medium” flow equations, the solution of which is equivalent to the partial

diagonalization or block-diagonalization of the many-body Hamiltonian [11, 21, 24, 33, 39,

58]. Because of its favorable polynomial scaling with system size, and the flexibility to target

ground and excited states of both closed- and open-shell systems, the IM-SRG provides a
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powerful ab initio framework for calculating medium-mass nuclei from first principles.

In the present chapter, I present the basic IM-SRG formalism and review some of the

successful applications to nuclei in recent years. After this introductory review and survey

of previous results, I present a detailed analysis of the perturbative content of the IM-

SRG in Sec. 3.5. While this section is rather technical, it provides crucial guidance for

understanding the similarities and differences with coupled cluster theory. More importantly,

the perturbative analysis in this chapter will play a key role in formulating the improved

approximations to be discussed in Chapter 5.

3.1 IM-SRG Formalism

3.1.1 Overview of the SRG

The main idea of the Similarity Renormalization Group (SRG) is to drive the Hamiltonian

H(s) towards a diagonal or block-diagonal form via a continuous unitary transformation [73]

H(s) = U†(s)H(0)U(s) . (3.1)

Taking the derivative of Eq. (3.1) with respect to the flow parameter s, we immediately

obtain the operator flow equation

d

ds
H(s) = [η(s), H(s)] , (3.2)
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where the generator η(s) is related to the unitary transformation U(s) by

η(s) =
dU†(s)
ds

U(s) = −η†(s) . (3.3)

Note that the formal solution for U(s) is given by the path- or S-ordered exponential

U(s) = S exp

∫ s

0
ds′η(s′) . (3.4)

For now, the specific form of η(s) is unimportant; I will revisit possible choices in Section

3.2, and how they can be designed to drive certain parts of the transformed Hamiltonian

to zero. In the original applications to nuclear physics, which we refer to as the free space

SRG, the aim was to soften the Hamiltonian by choosing η to decouple high- and low- mo-

mentum modes, driving the Hamiltonian towards a band-diagonal form with increasing s in

momentum representation, making the interactions more tractable for ab initio calculations

[33, 52, 54, 55]. On the one hand, the free-space SRG is convenient, as it does not have

to be performed for each different nucleus or nuclear matter density. On the other hand, it

is necessary to consistently evolve three-nucleon (and possibly higher) interactions that are

induced during the evolution to be able to soften the interactions significantly and maintain

approximate s-independence of A > 3 observables. The consistent SRG evolution of three-

nucleon operators represents a significant technical challenge that has only recently been

solved in recent years.

An interesting alternative is to perform the SRG evolution in-medium (IM-SRG) for

each A-body system of interest by normal-ordering with respect to an appropriate A-body

reference state [11, 21, 24, 33, 39, 58]. Unlike the free-space evolution, the IM-SRG has
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the appealing feature that one can approximately evolve 3, ..., A-body operators using only

two-body machinery thanks to the reshuffling of terms brought about by normal-ordering.

Moreover, with a suitable definition of the off-diagonal part of the Hamiltonian to be driven

to zero, the IM-SRG can be used as an ab-initio method in and of itself, rather than simply

to soften the Hamiltonian as in the free-space SRG.

3.1.2 M-Scheme Flow Equations for IM-SRG(2)

If the IM-SRG transformation is performed exactly for an A-body system, the transformed

Hamiltonian will involve up to an A-body interactions regardless of the initial particle rank

of the starting Hamiltonian. Within the second quantization formalism discussed above, it is

simple to show how these induced many-body forces would occur via the following equation,

[: a
†
aa
†
badac :, : a

†
ia
†
jalak :] = δci : a

†
aa
†
ba
†
jalakad : + . . . . (3.5)

In the free space SRG, the coupling between the different particle rank operators is “one-

way”. For instance, the two-body interactions feed into the flow equations for the three- and

higher-body interactions, but higher-body operators don’t renormalize lower-rank operators.

In contrast, for the IM-SRG these higher-body forces certainly feedback into evolution of the

lower-body interactions. To control the proliferation of many-body interactions, practitioners

of the IM-SRG method have typically performed a simple truncation in which only the

normal-ordered zero-,one-, and two-body parts of η(s) and H(s) are kept, so that

H(s) ≈ E(s) + f(s) + Γ(s) , (3.6)

η(s) ≈ η(1)(s) + η(2)(s) . (3.7)
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This is called the IM-SRG(2) truncation, and has been very successful in treating medium

mass nuclei [39, 58, 74]. In this work, I will also discuss the IM-SRG(3), where the three-

body forces are kept as well. The commutator expression with full three-body forces are

given in Appendix B, but the full IM-SRG(3) method without approximations has never

been implemented in physical systems due to its high computational cost. One of the main

thrusts of my thesis is the development of computationally tractable approximate IM-SRG(3)

calculations, see Chapter 5.

Evaluating Eq. 3.2 using the general commutator expressions found in Appendix A, one

obtains the IM-SRG(2) equations

dE

ds
=
∑
ab

(na − nb)ηabfba +
1

2

∑
abcd

ηabcdΓcdabnanbn̄cn̄d , (3.8)

df12

ds
=
∑
a

(1 + P12)η1afa2 +
∑
ab

(na − nb)(ηabΓb1a2 − fabηb1a2)

+
1

2

∑
abc

(nanbn̄c + n̄an̄bnc)(1 + P12)ηc1abΓabc2 , (3.9)

dΓ1234

ds
=
∑
a

{(1− P12)(η1aΓa234 − f1aηa234)− (1− P34)(ηa3Γ12a4 − fa3η12a4)}

+
1

2

∑
ab

(1− na − nb)(η12abΓab34 − Γ12abηab34)

−
∑
ab

(na − nb)(1− P12)(1− P34)ηb2a4Γa1b3 , (3.10)

where n̄i = 1 − ni, and the s-dependence has been suppressed. Note that permutation

symbol Pij , which represents the following interchange

Pijg(. . . , i, . . . , j) ≡ g(. . . , j, . . . , i) , (3.11)
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has been used to simplify the expressions.

The coupled differential equations in Eqs. (3.8)–(3.10) are integrated from s = 0 until a

suitable decoupling condition has been achieved, with the initial value condition

H(0) = E(0) + f(0) + Γ(0) . (3.12)

The perturbative content of Eqs. (3.8)–(3.10) will be analyzed in Section 3.5. In that

presentation, it will become clear that, much like CCSD, the IM-SRG(2) includes infinite-

order ladder sums in the pp and hh channels (i.e., Brueckner Hartree-Fock type correlations),

infinite-order ring diagram sums in the ph channel (RPA type correlations), plus complicated

“interference” terms between the various channels. Furthermore, like coupled cluster theory,

the IM-SRG at any truncation level is based on a commutator expression. Consequently, the

Hamiltonian contains only connected diagrams [16, 75] and one obtains size-extensive results.

From Eqs. (3.8)–(3.10), the two-body flow equation which contains doubly contracted two-

body operators dominates the cost. These terms scale polynomially as O(N6) with the

single-particle basis size N . This is similar in cost to CCSD, the Self-Consistent Green’s

Function Approach (SCGF) [19, 76, 77], or canonical transformation theory [78, 79].

3.1.3 Symmetries and the Flow Equations

It is often useful to impose explicit symmetries on a hamiltonian in order to reduce unneeded

trivial effort. This is obviously true for the flow equations as well. Examples include spin

symmetry in coulombic systems, translational invariance in a plane wave basis, and spherical

symmetry with nuclear systems, all of which are utilized in this work. I will present only the

spherically symmetric JJ-coupled flow equations, as they are the least trivial example.
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If the single-particle indices are made to refer to radial, angular momentum, and isospin

quantum numbers i = (kilijiτi), then they do not depend on the angular momentum pro-

jection mi. Then the only non-diagonal part of the one-body matrix elements become the

radial quantum numbers, e.g.,

f12 = f
l1j1τ1
k1k2

δl1l2δj1j2δτ1τ2 . (3.13)

Additionally, the two-body matrix can be coupled to angular momentum J to yield the

simplified (computationally) IM-SRG(2) flow equations

dE

ds
=
∑
ab

ĵ2
aηabfba(na − nb) +

1

2

∑
abcdJ

Ĵ2ηJabcdΓ
J
cdabnanbn̄cn̄d , (3.14)

df12

ds
=
∑
a

(1 + P12)η1afa2 +
1

ĵ2
1

∑
abJ

Ĵ2(na − nb)
(
ηabΓ

J
b1a2 − fabη

J
b1a2

)
+

1

2ĵ2
1

1

2

∑
abcJ

Ĵ2(nanbn̄c + n̄an̄bnc
)

(1 + P12) ηJc1abΓ
J
abc2 , (3.15)

dΓJ1234

ds
=
∑
a

((
1− (−1)J−j1−j2P12

)(
η1aΓJa234 − f1aη

J
a234

)
−
(

1− (−1)J−j3−j4P34

)(
ηa3ΓJ12a4 − fa3η

J
12a4

))
+

1

2

∑
ab

(
ηJ12abΓ

J
ab34 − ΓJ12abη

J
ab34

)
(1− na − nb)

+
∑
abJ ′

(na − nb)
(

1− (−1)J−j1−j2P12

)

× Ĵ ′
2


j1 j2 J

j3 j4 J ′


(
ηJ
′

14̄ab̄
Γ
J ′
ab̄32̄ − Γ

J ′
14̄ab̄η

J ′
ab̄32̄

)
, (3.16)

where ĵ =
√

2j + 1, indices with a bar indicate time-reversed states, and the η and Γ matrix

elements in the last line of Eq. (3.16) are obtained by a generalized Pandya transform (see,
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e.g., [80]),

O
J
12̄34̄ = −

∑
J ′

Ĵ ′
2


j1 j2 J

j3 j4 J ′

OJ
′

1432 . (3.17)

It has been shown that this angular momentum coupling process drops the N number of

M-scheme orbitals down to roughly to roughly to N2/3 J-scheme orbitals [64]

3.1.4 General Observables

Within the IM-SRG framework, the consistent transformation of observables in addition to

the Hamiltonian is conceptually very simple: The operator O(s) is normal ordered with

respect to |Φ〉 and truncated to the same two-body level, and then subjected to exactly the

same transformation via the same differential equation

d

ds
O(s) = [η(s), O(s)] , (3.18)

This means that an additional set of flow equations for each O(s) need to be integrated

concurrently with the hamiltonian, roughly doubling the size of the system of coupled differ-

ential equations. This means that the method scales linearly with each additional observable

one wishes to calculate, rendering the IM-SRG (as presented) unsuitable for treating systems

where more than a few additional observables are needed. In Chapter 4, a novel formulation

of the IM-SRG using Magnus expansion techniques will be presented that bypasses this (and

other related) computational limitation.
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〈i|H(0) |j〉 〈i|H(∞) |j〉
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Figure 3.1: Schematic representation of the initial and final Hamiltonians, H(0) and H(∞),
in the many-body Hilbert space spanned by particle-hole excitations of the reference state.

3.2 Choice of Generator

3.2.1 Decoupling

As mentioned previously, the IM-SRG transformation can be tailored to drive a suitably

defined “off-diagonal” part of the Hamiltonian to zero. To see how this works, let us consider

the case of a single reference system such as the ground state of a closed-shell nucleus.

Fig. 3.1 shows a schematic representation of the s = 0 normal ordered hamiltonian H(0) on

the left, where the reference state |Φ〉 is the 0p0h state at the top left. To isolate the ground

state, we desire a transformation that drives the Hamiltonian towards the form shown in the

right panel, where the 0p0h reference is now an eigenstate of the transformed hamiltonian.

Note that an initial three-body interaction would generate coupling between the npnh and

(n+3)p(n+3)h blocks, so the notation of Fig. 3.1 implicitly assumes we only have two-body

interactions.

Clearly, the matrix elements that couple the 0p0h reference state |Φ〉 to higher excitations
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are

〈Φ|H(0) : a
†
pah : |Φ〉 = fph , (3.19)

〈Φ|H(0) : a
†
pa
†
p′ah′ah : |Φ〉 = Γpp′hh′ , (3.20)

and their Hermitian conjugates. So for this particular problem, a suitable definition for the

“off-diagonal” parts of the hamiltonian to be driven to zero are

Hod(s) =
∑
ph

fph :a
†
pah : +

1

4

∑
pp′hh′

Γpp′hh′ :a
†
pa
†
p′ah′ah : + H.c. . (3.21)

During the flow, coupling is induced between the 0p0h and higher states, e.g.

〈Φ|H(s) :a
†
p1
. . . a

†
pA
ahA

. . . ah1
: |Φ〉 6= 0 . (3.22)

These induced forces are forced to vanish by our truncation, thus the eigenvalue obtained in

any truncated IM-SRG(n) type calculation is not variational. It is important that the size

and effect of this truncation can be investigated for systematic checking and improvement.

The matrix elements (3.19), (3.20) are approximately driven to zero, and the single zero-body

part of the hamiltonian becomes the eigenvalue of the exact ground state. Alternatively, one

could think of the final transformed hamiltonian as a unitarily equivalent hamiltonian in

which the Hartree-Fock solution is exact.
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3.2.2 White Generators

A generator must now be chosen, with the requirement that it will eliminate Hod as the

hamiltonian is transformed via the IM-SRG flow equations. The class of generators which

provides the biggest numerical benefits, and most transparent connection to MBPT is that

found in the work of White on canonical transformation theory in quantum chemistry [58, 78]:

ηIA/B(s) ≡
∑
ph

fph(s)

∆
A/B
ph (s)

:a
†
pah : +

∑
pp′hh′

Γpp′hh′(s)

∆
A/B

pp′hh′(s)
:a
†
pa
†
p′ah′ah : − H.c. . (3.23)

In future sections, I will appeal to the obvious three-body generalizations of this generator

in order to move forward with approximations to IM-SRG(3). Anti-Hermiticity of η(s) is

guaranteed by the sign change in the energy denominators under transposition in Eq. (3.23).

There are two different choices for the energy denominators employed in the White gen-

erators. These are differentiated by the superscripts in (3.23). They correspond to the

Epstein-Nesbet and Møller-Plesset partitionings used in Many-Body Perturbation Theory

(MBPT) (see, e.g., [16]). White’s prescription in Ref. [78] leads to the Epstein-Nesbet case:

∆A
ph ≡ 〈ph|H |ph〉 − 〈Φ|H |Φ〉 = fp − fh + Γphph = −∆A

hp , (3.24)

∆A
pp′hh′ ≡ 〈pp

′hh′|H |pp′hh′〉 − 〈Φ|H |Φ〉 = fp + fp′ − fh − fh′ − App′hh′ ≡ −∆A
hh′pp′ ,

(3.25)

where fp = fpp, fh = fhh, and

App′hh′ ≡ Γpp′pp′ + Γhh′hh′ − Γphph − Γp′h′p′h′ − Γph′ph′ − Γp′hp′h . (3.26)
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The Møller-Plesset case is simpler, yielding

∆B
ph ≡ fp − fh ≡ −∆B

hp , (3.27)

∆B
pp′hh′ ≡ fp + fp′ − fh − fh′ ≡ −∆B

hh′pp′ . (3.28)

These two choices give rise to almost no difference in practical calculations, but the con-

nection to Møller-Plesset perturbation theory is easier to show with the Møller-Plesset type

denominators. Almost all results presented in this work have been produced with Møller-

Plesset type White generators.

If one wants to work with the J-scheme flow equations (3.14)–(3.16), it is not unambigu-

ously clear how to treat the two-body matrix elements in the Epstein-Nesbet denominators

(3.24), (3.25) in the angular momentum coupling process. Using the monopole matrix ele-

ments yield a straightforward solution to this problem, i.e.

Γ
(0)
abcd ≡

∑
J (2J + 1)ΓJabcd∑

J (2J + 1)
(3.29)

in Eqs. (3.24)–(3.26).

The big advantage of White-type generators in practical calculations lies in the fact that

it suppresses all off-diagonal matrix at roughly the same decay scale (see Section 3.2.5).

Thus, the suppression rate is not a function of any energy or momentum scale, and it

therefore does not represent a proper RG flow. This in contrast to the imaginary-time and

Wegner generators, which will be discussed in the next Section 3.2.4. This RG distinction is

unimportant in terms of final results, as any choice choice of generator that decouples the

reference from excitations is producing an eigenstate regardless of the organization of order
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of suppression.

The benefits of this uniform suppression of off-diagonal elements is difficult to understate.

Because the White type generator’s matrix elements are given by ratios of energies, f and

Γ appear linearly of the right-hand side of the IM-SRG flow equations (3.8)–(3.10). This

clearly would yield a much less stiff set of flow equations than the Wegner generator, where

third powers of f and Γ appear (see below), or the imaginary time class, where second

powers appear. Thus, for systems where the White type generator remains a well defined

object throughout the transformation, the number of integration steps required to solve the

IM-SRG flow equations are manifestly less than other generators. However, if one encounters

a systems with vanishing energy denominators [21, 39], the White generators will be poorly

defined. In this work, all systems presented can be approximated as closed-shell systems,

and thus the White type generators are in general a well defined operator.

3.2.3 Imaginary-Time Generators

One can also motivate a second class of generator, by appealing to solutions of the imaginary-

time Schrdinger equation. Using the off-diagonal Hamiltonian, Eq. (3.21), we define

ηIIA/B(s) ≡
∑
ph

sgn
(

∆
A/B
ph (s)

)
fph(s) :a

†
pah :

+
∑
pp′hh′

sgn
(

∆
A/B

pp′hh′(s)
)

Γpp′hh′(s) :a
†
pa
†
p′ah′ah : −H.c. , (3.30)

where ∆A/B are again the Epstein-Nesbet and Møller-Plesset energy denominators defined

in Eqs. (3.24)–(3.28). The sign functions ensure that off-diagonal matrix elements are sup-

pressed instead of enhanced during the flow. Solving the IM-SRG(2) equations for the
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imaginary time generator shows that the decay scale for these matrix elements is approx-

imately given by the diagonal energy difference between the reference and 1p1h or 2p2h

excitations. This energy difference is just ∆A/B, depending on the definition chosen for

diagonal. Thus ηIIA/B generates a proper RG flow, organized by energy differences in the

choice for “diagonal”.

As mentioned, the quadratic dependence of the IM-SRG(2) equations on f and Γ creates

a more stiff set of equations, and thus require more integration steps to solve. This generator

is robustly defined even in the presence of vanishing energy denominators, and thus provides

a good choice for systems where the White generator becomes a poorly defined object. This

has been found to be very useful in the multi-reference IM-SRG(2) method of Hergert et al.

[81].

3.2.4 Wegner Generators

The generator which has been most formally explored is the Wegner type generators [73].

These provide a robustly defined generator for any definition of “off-diagonal”, and not

just ground state decoupling presented above. In the original work, Wegner proposed the

following generator

ηIII(s) = [Hd(s), Hod(s)] . (3.31)

Using the definition of the off-diagonal Hamiltonian for this work, Eq. (3.21), and the com-

mutators from Appendix A, one can arrive at the matrix elements of η(s). In IM-SRG(2)
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calculations, one keeps only two-body and lower operators, yielding

η12 =
∑
a

(1− P12)fd1af
od
a2 +

∑
ab

(na − nb)(fdabΓ
od
b1a2 − f

od
ab Γdb1a2)

+
1

2

∑
abc

(nanbn̄c + n̄an̄bnc)(1− P12)Γdc1abΓ
od
abc2 , (3.32)

η1234 =
∑
a

{
(1− P12)(fd1aΓoda234 − f

od
1aΓda234)− (1− P34)(fda3Γod12a4 − f

od
a3 Γd12a4)

}
+

1

2

∑
ab

(1− na − nb)(Γd12abΓ
od
ab34 − Γod12abΓ

d
ab34)

−
∑
ab

(na − nb)(1− P12)(1− P34)Γdb2a4Γoda1b3 . (3.33)

Clearly, the Wegner generator defined in Eqs. (3.32) and (3.33), and the flow equations (3.9)

and (3.10) are nearly identical except for anti-hermiticity and hermiticity respectively. Thus

the spherical J-scheme expressions for ηIII(s) are easily obtained from Eqs. (3.15) and (3.16).

The IM-SRG equations reach a fixed point when η(s) vanishes, the transformation ceases.

For the Wegner generator, a fixed point at s → ∞ exists if Hod(s) vanishes as required. It

has been shown that [73, 82]

d

ds
tr
(
Hod(s)

)2
= −2tr

(
η†(s)η(s)

)
≤ 0 (3.34)

since η†(s)η(s) is positive semi-definite. This implies that with this choice of generator,

Hod(s) is increasingly suppressed and H(s) is rendered into a form of Hd(s).

Similar, to the imaginary time generator, the Wegner generator creates a proper RG

flow that supresses matrix elements based on the diagonal energy difference between the

reference and 1p1h or 2p2h excitations. While formally appealing, and robust to vanishing
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energy denominators, this generator creates flow equations that depend on f and Γ in a cubic

fashion. This leads to extremely stiff equations that require many, many steps to arrive at

a decoupled reference. Additionally, the cost to construct ηIII is as much as evaluating the

flow equations, making each timestep approximately double the cost of the previous two

generators.

3.2.5 Decay Scales

Let us examine in more detail how the generators give rise to the different decay scales we

have claimed above, and thus create varying degrees of stiffness in solving the IM-SRG.

As with everything assumed above, we identify a diagonal and and off-diagonal part of the

hamiltonian,

H(s) = Hd(s) +Hod(s) , (3.35)

where Hod(s) is to be suppressed as s→∞. It is then natural to work in the eigenbasis of

Hd(0). Since the form of Hd(s) doesn’t change, it is possible to assume that its eigenbasis

is invariant under s, so that at each step of the flow

Hd(s) |n〉 = En(s) |n〉 . (3.36)

In this basis representation, Eq. (3.2) becomes

d

ds
〈i|H |j〉 =

∑
k

(〈i| η |k〉〈k|H |j〉 − 〈i|H |k〉〈k| η |j〉)

= −
(
Ei − Ej

)
〈i| η |j〉+

∑
k

(
〈i| η |k〉〈k|Hod |j〉 − 〈i|Hod |k〉〈k| η |j〉

)
, (3.37)
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and 〈i|Hod |i〉 = 0.

Consider now a White type generator, which can be written as

〈i| ηI |j〉 =
〈i|Hod |j〉
Ei − Ej

, (3.38)

and specifies Eq. (3.2) to the following

d

ds
〈i|H |j〉 = −〈i|Hod |j〉+

∑
k

Ei + Ej − 2Ek
(Ei − Ek)(Ej − Ek)

〈i|Hod |k〉〈k|Hod |j〉 . (3.39)

If the transformation generated by η truly suppresses Hod, and if it is assumed that Hod

either begins small compared to Hd, or will become so during the flow, then we can neglect

the second term quadratic in Hod. Then it is possible to just inspect the first term in the

flow equations in order to illustrate how off-diagonal matrix elements are being suppressed.

In this case, Eq. (3.39) implies

dEi
ds

∣∣∣∣
s=0

= 2
∑
k

〈i|Hod |k〉〈k|Hod |i〉
(Ei − Ek)

. ≈ 0 , (3.40)

and the energies stay (approximately) constant:

Ei(s) ≈ Ei(0) . (3.41)

Consequently, Eq. (3.39) can be integrated, and one arrives at

〈i|Hod(s) |j〉 ≈ 〈i|Hod(0) |j〉e−s , s > s0 , (3.42)
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as already mentioned in Section 3.2.2. This is not suggesting that the quadratic terms are

unimportant, just that the first term is what sets the decay scale.

The imaginary-time generator can be written as

〈i| ηII |j〉 = sgn
(
Ei − Ej

)
〈i|Hod |j〉 , (3.43)

and the flow equation

d

ds
〈i|H |j〉 = −

∣∣Ei − Ej∣∣ 〈i|Hod |j〉

+
∑
k

(
sgn(Ei − Ek) + sgn

(
Ej − Ek

))
〈i|Hod |k〉〈k|Hod |j〉 . (3.44)

Note that the sign function in the definition of ηII ensures that only the absolute value of

the energy difference between the states |i〉 and |k〉 appears in the first term. Integration of

Eq. (3.44) yields

〈i|Hod(s) |j〉 ≈ 〈i|Hod(0) |j〉e−|Ei−Ej |s , (3.45)

and off-diagonal matrix elements are suppressed, with a decay scale set by |Ei − Ej |.

Finally, we perform the same kind of analysis for the Wegner generator

〈i| ηIII |j〉 = 〈i| [Hd, Hod] |j〉 = (Ei − Ej)〈i|Hod |j〉 . (3.46)

The flow equation reads

d

ds
〈i|H |j〉 = −

(
Ei − Ej

)2 〈i|Hod |j〉+
∑
k

(
Ei + Ej − 2Ek

)
〈i|Hod |k〉〈k|Hod |j〉 , (3.47)
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and we obtain

〈i|Hod(s) |j〉 ≈ 〈i|Hod(s0) |j〉e−(Ei−Ej)2(s−s0)
. (3.48)

Thus, the imaginary-time and Wegner generators yield proper RG transformations, in

the sense that matrix elements between states with large energy differences ∆Eij = |Ei−Ej |

decay at smaller flow parameters s than states with small ∆Eij . The White generator, on

the other hand, acts on all matrix elements simultaneously. In Section3.3, it will be shown

that these different choices do not lead to large differences in the large s limit.

3.3 Numerical Explorations

In this section, we illustrate the general properties of the IM-SRG flow equations in numerical

applications, with special emphasis on a comparison of the different generators that were

introduced in the previous sections. To simplify matters, we only use a two-body interaction

throughout this section (see 3.3.1 for details).

3.3.1 Implementation

Baring a few cases, the IM-SRG has only really been implemented for nuclear systems,

therefore in this review chapter of the method I only present details for typical nuclear cal-

culations. The details that will be relevant for other systems will be introduced as the results

appear in later chapters. For nuclear systems, the IM-SRG is implemented in harmonic os-

cillator (HO) configuration spaces. The principal advantage of this basis in nuclear systems

is that one can factorize center-of-mass and relative degrees of freedom in the evaluation of

matrix elements (see, e.g., for [83]). This is an invaluable property for self-bound systems

like nuclei. For methods like the No-Core Shell Model, this property can be retained even at
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the many-body level for a suitable choice of model space truncation [12]. For methods which

use single-particle basis truncations, like the IM-SRG, coupled cluster, and self-consistent

greens functions, this exact factorization of center-of-mass and intrinsic wave functions is

analytically spoiled, although it is still observed empirically. We revisit this in chapter 4.

As mentioned before, the IM-SRG explicitly exploits spherical symmetry for nuclear

applications by working with the J-scheme IM-SRG flow equations presented in Sec. 3.1.3.

In these spherically symmetric basis sets, it is possible to achieve convergence for spherical

nuclei of interest in reasonable calculations. This is true even for “bare” interactions from

chiral EFT like the N3LO interaction by Entem and Machleidt, with an initial cutoff Λ =

500 MeV/c [1, 2]. This is the interaction used to produce most of the nuclear results presented

in this thesis, both at its original resolution scale, indicated by λ = ∞ , and at a lower

resolution scale λ = 2.0 fm−1, which is generated by a free-space SRG evolution or softening

[33, 53].

To obtain reference states for the IM-SRG calculation, the Hartree-Fock equations for

the intrinsic Hamiltonian (2.2) are self consistently solved. The intrinsic Hamiltonian is then

transformed to the Hartree-Fock basis and normal ordered with respect to the Hartree-Fock

reference state, discarding the residual 3N part in the process (cf. Eq.(2.5)). Starting from

the zero-, one-, and two-body matrix elements of the truncated normal-ordered Hamiltonian

as initial values, the J-scheme flow equations (3.14)–(3.16) are integrated with the CVODE

solver from the SUNDIALS package [84]. For White and imaginary-time generators, we

choose the recommended Adams-Bashforth-Moulton predictor-corrector method for non-

stiff systems, while the fifth-order backward-differentiation method is used for the stiff flow

equations in the Wegner case.

In order to determine at what finite value of s sufficient decoupling is achieved, second-
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Nucleus λ [ fm−1] E14 [ MeV] Eex [ MeV]
4He ∞ -27.18 -27.26(3)
16O ∞ -126.01 -126.3(1)
40Ca ∞ -366.23 -369(1)
4He 2.0 -28.27 -28.27
16O 2.0 -165.68 -165.68
40Ca 2.0 -595.98 -595.95(2)
78Ni 2.0 -1319.41 -1319.4(1)
100Sn 2.0 -1953.96 -1954.3(3)
132Sn 2.0 -2752.03 -2753(2)

Table 3.1: IM-SRG(2) ground-state energies of selected closed-shell nuclei for the the chiral
N3LO interaction by Entem and Machleidt [1, 2], with λ =∞ and λ = 2.0 fm−1 (cf. Fig. 3.2).
E14 are the energies obtained for emax = 14 at optimal ~ω, and Eex are extrapolated to
infinite basis size (see text), with extrapolation uncertainties indicated in parentheses.

order MBPT correction for the flowing Hamiltonian H(s) is used. This is a direct measure

of the off-diagonal part of the Hamiltonian as defined in Eqs. (3.21). When the second order

MBPT correction drops below 10−6 MeV, the flow is stopped and the resulting zero-body

energy is considered the full ground state energy.

3.3.2 Convergence

In Fig. 3.2, the convergence of the IM-SRG(2) ground-state energies of the closed-shell nuclei

4He, 16O, and 40Ca with respect to the single-particle basis size emax (see Appendix 3.3.1)

is shown. All calculations shown use the White-Epstein-Nesbet generator ηC , Eq. (3.23),

and it should be assumed unless otherwise stated that this is the generator being used. It

should be noted that for the unevolved N3LO interaction, the Hartree-Fock solutions for all

three nuclei have positive energy. Nonetheless, the HF states still lead to reasonable and

converged IM-SRG(2) energies as shown in Fig. 3.2.

We can correct for the effects of using a finite HO basis by using the methods described

in Refs. [13, 14]. A HO basis with fixed emax has ultraviolet and infrared cutoffs which are
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Figure 3.2: Convergence of 4He, 16O, and 40Ca IM-SRG(2) ground-state energies
w.r.t. single-particle basis size emax, for a chiral N3LO NN interaction with λ =∞ (left pan-
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given by

ΛUV ≡
√

2emax + 7 ~/aHO , (3.49)

LIR ≡
√

2emax + 7 aHO , (3.50)

where aHO =
√

~/mω is the usual oscillator length, and m the nucleon mass. With these

definitions, we can perform a simultaneous fit of the data for (almost) all pairs (emax, ~ω)

to the expression

E(emax, ~ω) = E∞ + A0e
−Λ2

UV/A
2
1 + A2e

−2k∞LIR , (3.51)

where the energy for infinite basis size E∞, the binding momentum k∞, and the Ai are

treated as parameters. For the unevolved N3LO interaction, we found it necessary to exclude

the emax = 8 data set to obtain stable fits for 16O and 40Ca, most likely because ΛUV is

close to the cutoff of the initial interaction for emax = 8 and the lower values of ~ω we

are considering. The resulting extrapolated energies are indicated by gray dashed lines in

Fig. 3.2, and they fall within 1% or less of the energies for emax = 14, the largest basis size

which was used in actual calculations. Both energies are reported for each nucleus in Table

3.1.

For the light nuclei 4He, the IM-SRG(2) ground-state energy is about 2 MeV below the

exact result from a No-Core Shell Model (NCSM) calculation with the same chiral N3LO

interaction (see, e.g., Ref. [54]). Further, IM-SRG(2) results can be compared to Coupled

Cluster calculations with the same interaction [64, 85] (also see Ref. [74]). The IM-SRG(2)

energies are significantly lower than the CCSD energies, lower even than the Λ-CCSD(T)
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results, a CC method which takes perturbative triples corrections into account. I will soon

present a perturbative analysis of the IM-SRG in Sec. 3.5, which shows the origin of the the

difference between IM-SRG(2) and CCSD. This overbinding can be explained by a systematic

undercounting of certain repulsive fourth-order terms in the IM-SRG(2) truncation, which

simulates the additional attraction that is otherwise gained from including triples correction.

For the (comparably) hard initial interaction, the IM-SRG(2) overshoots the Λ-CCSD(T)

results, while the reduced importance of higher-order MBPT corrections for soft interactions

causes the IM-SRG(2) results to fall in between the CCSD and Λ-CCSD(T) results (see

Secs. 3.5 and Refs. [58, 74]).

In the right panels of Fig. 3.2, we show the same kind of convergence plots for the chiral

N3LO interaction at the reduced resolution scale λ = 2.0 fm−1. As expected, the speed

of the convergence is greatly enhanced by using a softer interaction [33], which is evident
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from the significantly smaller energy scales in the lower panels. In Tab. 3.1, we can see that

the extrapolated energies agree with the emax = 14 results within 0.01-0.1%. For 4He, there

appear to be some deviations from the otherwise variational convergence pattern in the other

cases. Of course, the IM-SRG is not strictly variational because of the truncations in the

flow equations (3.8)–(3.10). In the present case, however, these deviations are on the order

of a 10 keV or less, and are most likely dominated by numerical artifacts from integrating

the flow equations.

For a soft interaction, the large single-particle basis sizes we have used here are sufficient

to converge nuclei which are much heavier than 40Ca. This is demonstrated in Fig. 3.3,

where we show the convergence of the IM-SRG(2) ground-state energies of the proton- or

neutron-rich exotic nuclei 78Ni, 100Sn, and 132Sn. The corresponding energies are included

in Tab. 3.1. Using only a softened chiral N3LO interaction, the binding energy of these

nuclei is overestimated significantly, continuing a trend which was already noticeable for 16O

in Fig. 3.2. This overbinding is caused by the shift of repulsive strength from the off-shell

two-body interaction to induced three- and higher many-body forces as the resolution scale

is lowered, of course, and fixed by including at least the induced three-nucleon forces [21, 74].

While the inclusion of three-body operators comes with computational challenges, we stress

that these induced terms have low resolution scales as well, and do not affect the rate of

convergence of the IM-SRG ground-state energies adversely. While computational issues

pertaining to the storage of 3N matrix elements present a challenge, converged calculations

with NN + 3N interactions for the A ∼ 100 region and beyond have now become possible

[74, 86, 87].
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3.3.3 Choice of Generator

Let us now study the effect of our choice of generator on the IM-SRG(2) ground-state ener-

gies. In Fig. 3.4, we show the IM-SRG(2) ground-state energies for the five different genera-

tors discussed in Sec. 3.2. Note that the panels for the White and imaginary-time generators

show curves for both the Epstein-Nesbet and Møller-Plesset choices for the energy denomi-

nators and sign functions, respectively. The resulting ground-state energies for 40Ca agree

within 15 keV, which amounts to relative differences from 10−6 to 10−4. Remarkably, this

agreement holds for both the softened and bare N3LO interactions, and irrespective of the

used basis parameters emax and ~ω. The extrapolated energies therefore also only differ by

equally small amounts.

It is evident from Fig. 3.4 that the White and imaginary-time generators give very similar

results. For the bare N3LO interaction, the extrapolated 40Ca ground-state energies are

−368.9 MeV and −367.7 MeV, respectively, which is a difference of about 0.3%. For any

~ω in the studied range, the energy differences between the two types of generators drop

below 1% from emax = 8 onward. As expected, the differences become smaller when the

resolution scale of the interaction is lowered to λ = 2.0 fm−1. The extrapolated energies are

−596.0 MeV and −595.6 MeV for the White and imaginary-time generators, respectively,

which amounts to a relative difference of order 10−4. The extrapolated values are affected

by slightly larger differences for small and large ~ω. Near the energy minima with respect to

~ω, where the results are better converged, absolute differences are typically below 10 keV.

For the soft interaction, the results for the Wegner generator agree very well with those

for the other generators: The extrapolated 40Ca ground-state energy is −595.4 MeV. The

situation is quite different for the bare interaction, though. To understand what we see, we
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first consider the convergence pattern that is predicted for a (quasi)-variational theory by

the extrapolation formula (3.51) [13, 14]. At fixed emax, the derivative of Eq. (3.51) with

respect to the oscillator parameter ~ω indicates that the ultraviolet (UV) and infrared (IR)

correction terms are minimized at large and small ~ω, respectively. The exponents of the

UV and IR terms behave like Λ2
UV ∼ −emax and LIR ∼

√
emax as emax increases, hence we
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expect IR corrections to dominate eventually. Consequently, we can infer that the minimum

of the energy with respect to the oscillator parameter should move to larger ~ω first until

UV convergence is achieved, and then to smaller ~ω for IR convergence.

In Fig. 3.4, we only see the energy minimum move towards IR convergence at small ~ω,

which suggests that the calculation is sufficiently converged in the UV regime already for

emax = 8, the smallest basis shown in the figure. For the Wegner generator, the minimum

is still moving to larger ~ω values, which suggests that the calculation is not yet converged

in the UV regime, and a slower convergence with basis in general. If we use the data

for emax = 8, 10, 12, which behave variationally, an extrapolation to infinite basis using

Eq. (3.51), yields −370.7 MeV, which is compatible with the extrapolated results for the

White and imaginary-time generators within uncertainties.

Going to emax = 14, we face a complication: while the energy minimum moves to larger

~ω, the curve intersects those for smaller emax. This is not ruled out a priori, because the IM-

SRG is a non-variational approach, but makes the assumptions underlying the extrapolation

formula (3.51) questionable. Setting aside the fundamental issue of applicability, we have

extrapolated the energy using different subsets of our calculated data, and thereby obtain

the shaded band in Fig. 3.4, which represents a 10% variation of the extrapolated energy.

To better understand the behavior of the IM-SRG flow for the Wegner generator, we

have to consider how its structure differs from our other choices for η. The definition of the

off-diagonal Hamiltonian Hod(s), Eq. (3.21), is the same in all three cases, so we aim for the

same (or at least similar) fixed points of the flow, where η(∞) = 0. However, we know that

the White and imaginary-time generators are directly proportional to Hod, i.e., the only non-

vanishing matrix elements are of the types ηph/hp and ηpp′hh′/hh′pp′ . The Wegner generator,

on the other hand, has many additional non-zero matrix elements coming from the evaluation
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λ = 2.0 fm−1 (bottom panels), respectively. The dashed lines indicate extrapolated energies.

of the commutator, analogous to the IM-SRG flow equation itself (cf. Eqs. (3.32),(3.33)).

It does not come as a surprise, then, that the generators differ in the way they build

correlation effects from the many-body perturbation series into the flowing Hamiltonian —

a difference that will be enhanced for interactions for which order-by-order convergence of

the Many-Body Perturbation series cannot be guaranteed (cf. Secs. 3.3.4 and 3.5). For

illustration, Fig. 3.5 compares results for the regular Wegner generator with those for a
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restricted version defined by

ηIV
ij = ηIII

ij , ηIV
ijkl =


ηIII
ijkl for ijkl = pp′hh′, hh′pp′ ,

0 else ,

(3.52)

matching the structure of the White and imaginary-time generators. We have explored

restrictions of the one-body part as well, but they cause no noticeable differences while the

impact of the restriction in the two-body part is significant.

The convergence pattern of the restricted ηIV is quasi-variational for both the bare and

softened N3LO interactions, and has the energy minimum moving towards smaller ~ω, sug-

gesting that the calculation is converged in the UV regime, and now converging in the IR

regime. The extrapolated 40Ca g.s. energies are −367.4 MeV and −595.3 MeV, respec-

tively, in very good agreement with the White and imaginary-time generators, as well as

the unrestricted Wegner generator ηIII in the case of the soft interaction (also cf. Fig. 3.5).

This strongly suggests that our hypothesis was correct, and it is indeed the additional non-

zero matrix elements in ηIII which introduce uncontrolled behavior. It remains to be seen

whether we can reach a deeper understanding of the underlying mechanism. A likely expla-

nation is that the truncation of the commutator (3.31) to one- and two-body contributions

only (Eqs. (3.32), (3.33)) causes an imbalance in the infinite-order resummation of the Many-

Body Perturbation series. For the time being, we have to advise against the use of the Wegner

generator in IM-SRG calculations with (comparably) “hard” interactions that exhibit poor

order-by-order convergence of the perturbation series.
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3.3.4 Decoupling

As discussed in Sec. 3.2.1, the IM-SRG is built around the concept of decoupling the reference

state from excitations, and thereby mapping it onto the fully interacting ground state of the

many-body system within truncation errors. Let us now demonstrate that the decoupling

occurs as intended in a sample calculation for 40Ca with our standard chiral N3LO interaction

at λ = 2.0 fm−1. Fig. 3.6 shows the rapid suppression of the off-diagonal matrix elements in

the Jπ = 0+ neutron-neutron matrix elements as we integrate the IM-SRG(2) flow equations.

At s = 2.0, after only 20–30 integration steps with the White generator, the Γpp′hh′(s) have

been weakened significantly, and when we reach the stopping criterion for the flow at s = 18.3,

these matrix elements have vanished to the desired accuracy. While the details depend on

the specific choice of generator, the decoupling seen in Fig. 3.6 is representative for other

cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian

is driven to the simplified form indicated in Fig. 3.6. The IM-SRG evolution does not only

decouple the ground state from excitations, but reduces the coupling between excitations

as well. This coupling is an indicator of strong correlations in the many-body system,
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which usually require high- or even infinite-order treatments in approaches based on the

Goldstone expansion. As we have discussed in Sec. 3.1, the IM-SRG can also be understood as

such a non-perturbative, infinite-order resummation of the Many-Body Perturbation series,

which builds the effects of correlations into the flowing Hamiltonian. To illustrate this, we

show results from using the final IM-SRG Hamiltonian H(∞) in Hartree-Fock and post-HF

methods in Fig. 3.7.

After the same 20–30 integration steps that lead to a strong suppression of the off-diagonal

matrix elements (cf. Fig. 3.11), the energies of all methods collapse to the same result, which

is the IM-SRG(2) ground-state energy. By construction, this is the result that would be

obtained in a Hartree-Fock calculation with the IM-SRG Hamiltonian. Energy corrections

due to correlations have been re-summed into the zero-body part of H(∞), and therefore

MBPT(2) or either of the CC resummations do not contribute additional correlation energy.

The collapse of the ground-state energies occurs in the same fashion for all (emax, ~ω),

although the rate and magnitude of the change in g.s. energy with the flow parameter s may

be quite different for each method.

Let us take a more detailed look at Fig. 3.7. For the bare N3LO interaction, the emax = 10

results are not yet sufficiently converged with respect to either the single-particle basis and

many-body expansions, hence the ground-state energy changes quite significantly with s

(cf. Fig. 3.2). For the soft N3LO interaction with λ = 2.0 fm−1, on the other hand, conver-

gence w.r.t. basis size is already quite satisfactory at emax = 10. Because this interaction is

more perturbative, the small energy differences between the different many-body methods,

in particular the second-order and infinite-order CC and IM-SRG resummations, indicates

good convergence of the many-body expansion1 [33, 51]. We will return to this subject in

1As discussed in Sec. 3.4, there is a caveat attached to this statement, namely that order-by-order pertur-
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Sec. 3.5.

To conclude this section, we want to briefly discuss the four main scenarios that can occur

when we use IM-SRG Hamiltonians as input for other many-body methods. We assume that

calculations are converged w.r.t. basis size, etc.

1. Full IM-SRG, exact many-body method: For exact methods like the No-Core Shell

bative convergence strongly depends around which reference state the perturbation expansion is constructed.
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Model or No-Core Full Configuration, the ground-state energy would be flat as a func-

tion of s. By performing an untruncated IM-SRG calculation, we essentially split the

diagonalization of the many-body Hamiltonian into a part that is obtained by solving

the IM-SRG flow equation, and a part that is obtained with traditional eigenvalue

methods, with s serving as an arbitrary separation point.

2. Full IM-SRG, approximate many-body method: The ground-state energy varies with s,

but for s → ∞, the approximate many-body method yields the exact eigenvalue due

to the untruncated IM-SRG transformation. Here we see how the IM-SRG can be used

to improve the input Hamiltonian for other many-body approaches.

3. Truncated IM-SRG, exact many-body method: Again, the ground-state energy varies

with s, and the overall variation is a measure of the extent to which the IM-SRG

truncation violates exact unitarity.

4. Truncated IM-SRG, approximate many-body method: This is the most common, and

most complicated case. Because of the IM-SRG truncation, the IM-SRG will reproduce

the exact ground-state energy only approximately in the limit s→∞. If the approx-

imate many-body method contains content beyond the truncated IM-SRG, then the

result may actually degrade to some extent, whereas the IM-SRG still improves the re-

sult in the opposite scenario, but the uncertainty of E(∞) is hard to quantify unless one

also uses exact many-body methods for comparison. Both of these scenarios are realized

in Fig. 3.7: MBPT(2) is less complete than the IM-SRG(2), so the MBPT(2) energy is

improved towards the exact energy. Note that this improvement can come in the form

of attractive or repulsive corrections, because MBPT(2) typically underestimates the

g.s. energy for the bare interaction, but overshoots with soft interactions [33, 58, 88–
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92]. Both CCSD and Λ-CCSD(T) differ from the IM-SRG(2) at fourth order in MBPT

(see Sec. 3.5). CCSD typically underpredicts the nuclear binding energy, hence the

additional correlation energy provided by the IM-SRG improvement should improve

agreement with exact methods. Λ-CCSD(T) contains fourth-order 3p3h (triples) cor-

relations, which are typically attractive, and missing in the IM-SRG(2) (cf. Sec. 3.5).

This explains why the CCSD(T) ground-state energy actually increases (i.e., the bind-

ing energy decreases) with IM-SRG(2) input Hamiltonians as s → ∞ for the soft

interaction. As mentioned above, emax = 10 is not yet sufficiently converged in the

case of the ground-state energies shown in the top panel. For larger bases, the IM-

SRG(2) again increases the Λ-CCSD(T) ground-state energy Ref. [74]. Part of this

increase is benign, because Λ-CCSD(T) is known to overestimate ground-state energies

[16, 64, 67, 93–95].

3.3.5 Radii

In Sec. 3.1.4, we have discussed the evaluation of observables other than the ground-state

energy, by solving additional sets of flow equations along with those for the Hamiltonian. As

an example, we show the convergence of the charge radii of 4He, 16O, and 40Ca in Fig. 3.8.

The results are obtained by normal-ordering and evolving the intrinsic proton mean-square

radius operator,

R2
p ≡

∑
i

1

2

(
1 + τ

(i)
3

)
(ri −R)2 , (3.53)

where the isospin operator projects on protons, and R is the center of mass. We obtain the

charge radii by applying the corrections due to the mean-square charge radii of proton and
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Figure 3.8: Convergence of 4He, 16O, and 40Ca IM-SRG(2) charge radii w.r.t. single-particle
basis size emax, for a chiral N3LO NN interaction with λ =∞ (left panels) and λ = 2.0 fm−1

(right panels). The gray dashed lines indicate experimental charge radii from [15].

neutron (see, e.g., [96]):

Rch ≡
√
R2
p + r2

p +
N

Z
r2
n =

√
R2
p + (0.8775 fm)2 − 0.1161 fm2 , (3.54)

with values of r2
p and r2

n taken from [97].

Focusing on the results for the bare N3LO interaction first, we find satisfactory conver-
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gence of the charge radii to the level of 1% over a wide region of basis parameters ~ω. For

different emax, the curves intersect in the vicinity of the ~ω that minimizes the ground-state

energies (cf. .Fig. 3.2). The IM-SRG(2) result for the charge radius of 4He is quite close to

the experimental value. It is somewhat counter-intuitive, however, that the radius is slightly

underpredicted, while about 1 MeV binding energy is missing (see Tab. 3.1). For 16O, the

binding energy is similarly close to the experimental one, but the charge radius is already

too small by almost 10%, while overbinding and underestimation of the radius are consistent

on a superficial level with 40Ca.

Using the softened N3LO interaction with λ = 2.0 fm−1 as input, convergence of the radii

improves dramatically over the bare N3LO case. On the scales shown in Fig. 3.8, results from

emax = 10 onwards are all but indistinguishable. At the same time, the underestimation

of the radii becomes worse, which is consistent with the increased binding energies that are

reported in Sec. 3.3.2. Part of the problem is that the change of the resolution scale of

the N3LO interaction induces 3N, . . . interactions which have not been taken into account.

These induced interactions give repulsive contributions to the g.s. energy, and are therefore

also expected to increase the radii to some extent Refs. [19, 21, 42, 74, 86, 87, 98–100].

Under a change of resolution scale λ, the radius operator (or any other observable) should

be transformed consistently with the Hamiltonian, causing it to gain induced many-body

contributions. Since RG transformations like the free-space SRG, and related methods like

Lee-Suzuki, are designed to deal with high-momentum/short-distance physics, their effect on

the radius and other long-ranged operators, and therefore the size of induced contributions,

was expected to be small [101–103]. A recent free-space SRG study suggests that induced

contributions may be small but not negligible in view of the discrepancies between experi-

mental and calculated radii from state-of-the-art ab initio many-body calculations [104].
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A related issue is the use of simple one-body anstze like (3.53) for the mean-square proton

radius and other radius or transition operators. These specific forms neglect two- and higher

many-body contributions which are generated by exchange currents, for instance, and should

be included in the “bare” operator in the first place. Chiral EFT provides a consistent

framework to treat these effects on a similar footing as the interaction itself [105–114], but

the exploration of these structurally richer operators in nuclear many-body calculations is

still in its infancy [115].

3.4 Choice of Reference State

3.4.1 Overview

As explained in Sec. 3.2.1, the IM-SRG generates a mapping between an arbitrary reference

state |Φ〉 and an eigenstate |Ψ〉 of the Hamiltonian. In a finite system, i.e., in absence of

phase transitions, and without symmetry constraints on the basis, such a mapping always

exists, because we can diagonalize the Hamiltonian and construct a unitary transformation as

the dyadic product of the exact ground state and the reference state, plus suitable additional

states to complete the basis. Performing an evolution with the untruncated IM-SRG flow

equations is equivalent to such a (partial) diagonalization2.

3.4.2 Harmonic Oscillator vs. Hartree-Fock Slater Determinants

In previous sections, we have explained that the ground-state energies of the untruncated

IM-SRG flow equations do not depend on the choice of reference state. In practice, the IM-

SRG(2) truncation of the flow equation system (Eqs. (3.8)–(3.10)) introduces an artificial

2Problems could only occur if we used a pathological generator.
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Figure 3.9: Top panel: IM-SRG(2) energy of 40Ca with a HF (solid lines and symbols) and
a HO reference state (dashed lines, open symbols), obtained with the Wegner generator.
Bottom panel: Overlap of the HF and HO reference states.

reference-state dependence.

In Fig. 3.9, we compare ground-state energies for 40Ca that were obtained with a naive

HO Slater determinant and a HF Slater determinant, respectively. For oscillator parameters

16 ≤ ~ω ≤ 24 MeV, the two types of calculations essentially converge to the same ground-

state energies. In this range, the HO and HF determinants have their largest overlap, as

shown in the lower panel of Fig. 3.9. Outside of this window, the overlap drops off steeply,

which suggests that the HF single-particle wave functions differ appreciably from the plain

HO single-particle wave functions. Of course, we have to keep in mind that these differences
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choice of generator. The gray line indicates the result of the Hartree-Fock calculation with
the same interaction and basis parameters.

are amplified exponentially when the many-body overlap is calculated as the product of

single-particle overlaps.

Beyond ~ω = 28 MeV, the IM-SRG(2) energies obtained with a HO refererence state

actually grow with the basis size emax, which suggests that the IM-SRG is no longer targeting

the Hamiltonian’s ground state in those cases. This conclusion is supported by our inability

to obtain converged results with White-type generators (see Eq. (3.23)) for the larger ~ω

values. The IM-SRG flow stalls because of divergences in the generator matrix elements

that are caused by small energy denominators, which can be viewed as indicators of level

crossings in the spectrum of the evolving many-body Hamiltonian.

So we see that unlike CC theory, truncated IM-SRG calculations are sensitive to the

quality of the starting reference. This can be easily explained if the unitary transformation

generated by the IM-SRG(2) is inspected. In order to have this insensitivity to reference

choice, we would need to be able to take advantage of the unitary version of Thouless’ thm
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found in (2.34), proven by Rowe,Ryman, and Rosensteel in Ref. [116], relating any two

non-orthogonal normalized Slater determinants |ΦA〉, |ΦB〉 via

|ΦB〉 = exp

(∑
ph

Xph :a
†
pah : −X∗ph :a

†
hap :

)
|ΦA〉 . (3.55)

Unfortunately, Eq. (3.55) does not apply to the IM-SRG in a straightforward fashion.

As mentioned in Sec. 3.1.1, the unitary transformation generated by the IM-SRG is

formally given by the S-ordered exponential

U(s) = S exp

∫ s

0
ds′ η(s′) , (3.56)

because the generator dynamically changes during the flow. It can be defined as a product

of infinitesimal unitary transformations,

U(s) = lim
N→∞

N∏
i=0

eη(si)δsi ,
∑
i

si = s , (3.57)

or the series expansion

U(s) =
∑
n

1

n!

∫ s

0
ds1

∫ s

0
ds2 . . .

∫ s

0
dsnS{η(s1) . . . η(sn)} . (3.58)

Here, S ensures that the flow parameters in the operator products appearing in the integrands

are always in descending order. Unlike the cluster operator of the CC method, the generator

η(s) necessarily contains particle-hole de-excitation operators, or else it would not be anti-

Hermitian as required for a unitary transformation. Thus, it is possible to have non-vanishing

contractions between generator components of different particle rank, and commutators of
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Figure 3.11: Schematic illustration of the energy flow equation (3.61) for the White generator
with Møller-Plesset energy denominators (Eq. (3.23)) in terms of Hugenholtz diagrams (see
text). The grey vertices represent H(s), and the double lines indicate energy denominators
calculated with f(s). On the second line, the flow equation is expanded in terms of H(s−δs)
(simple black vertices) and the corresponding energy denominators from f(s − δs) (single
lines). The braces indicate which term of H(s) is expanded, and dots represent higher order
diagrams generated by the integration step s− δs→ s.

such components do not vanish in general:

[η(i)(s), η(j)(s′)] 6= 0 . (3.59)

As a result, U(s) does not factorize automatically, and it is this lack of factorization that

makes the IM-SRG(2) method sensitive to reference states. We will revisit this sensitivity

to reference state in the context of chemistry systems in Sec. 6.1.
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3.5 Perturbative Analysis of the Flow Equations

3.5.1 Overview

The expressions for the White-type generators discussed in Sec. 3.2.2 are a manifest link

between the IM-SRG and Many-Body Perturbation Theory. For the sake of discussion, we

focus on the White generator with Møller-Plesset energy denominators, keeping the short-

hands ∆ph, ∆pp′hh′ , etc., but dropping the superscript B. The generator with Epstein-

Nesbet energy denominators can always be connected to this case by series expansion, e.g.,

1

fp − fh + Γphph
=

1

fp − fh

∑
k

(
Γphph
fp − fh

)k
. (3.60)

Let us now consider the flow equation for the ground-state energy (3.8), but broaden

our perspective beyond the IM-SRG(2) truncation to keep track of the induced three-body

contribution (cf. Eq. (B.2) and the discussion in Sec. 3.2.1). Plugging in the White-Møller-

Plesset generator with explicit three-body contribution, we obtain

dE

ds
=2
∑
ph

|fph|2

∆ph
+

1

2

∑
pp′hh′

|Γpp′hh′|
2

∆pp′hh′
+

1

18

∑
pp′hh′

|Wpp′p′′hh′h′′ |
2

∆pp′p′′hh′h′′
. (3.61)

The right-hand side of Eq. (3.61) has the structure of the second-order MBPT correction to

the ground-state energy, but the matrix elements and energy denominators depend on the

flow parameter s. Thus, Eq. (3.61) implies that the ground-state energy E(s) is RG-improved

with contributions from higher orders of MBPT during the flow.

In the following discussion, we characterize all operators in terms of the same dimen-

sionless book-keeping parameter g. We also assume that the initial Hamiltonian satisfies
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the hierarchy fd > Γ > W throughout the flow. The hierarchy of Γ and W , in particular,

is compatible with the natural hierarchy of chiral two- and three-nucleon forces [32, 33].

Initially,

E(0) = O(g0), fd(0) = O(g0) , Γ(0) = O(g) . (3.62)

If we do not include an initial three-body term, and choose a HF Slater determinant (fod =

{fph, fhp}) as the IM-SRG reference state, we also have

fod(0) = 0, W (0) = 0 . (3.63)

From the flow equations (3.8)–(3.10) (or (B.2)–(B.5)), we can conclude that corrections to

Γ(s) are of order O(g). Corrections to f(s) are O(g2) because they are generated by terms

which are quadratic in Γ(s), and the same reasoning holds for the induced off-diagonal and

three-body matrix elements,

fod(s) = O(g2) , W (s) = O(g2) , for s > 0 (3.64)

(also cf. Sec. 3.2.5). This establishes that the three terms in the flow equation (3.61) are of

order O(g4),O(g2), and O(g4), respectively.

In Fig. 3.11, the effect of integrating Eq. (3.61) by a single step s− δs→ s is illustrated

schematically in terms of Hugenholtz diagrams (see, e.g., [16, 117]). Expanding the H(s)

vertices in terms of H(s − δs) vertices, we see that the Γ(s) term has contributions from

O(g2) through O(g4). Expanding in H(s − 2δs) instead, we would get additional higher

order diagrams, and so forth. Thus, we perform a (partial)re-summation of the many-body
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perturbation series by integrating the IM-SRG flow equations from s = 0 to ∞.

Fig. 3.11 shows that all topologies for second- and third-order energy diagrams are gener-

ated, and we will demonstrate below that we build up to the complete energy through O(g3)

when we integrate Eq. (3.61). The Γ(s) term also generates fourth-order diagrams with up

to 4p4h/quadruples excitations, but f(s) and W (s) terms clearly contribute at fourth order

as well. The former are included in the IM-SRG(2), which is therefore third-order correct,

similar to Coupled Cluster with singles and doubles (CCSD). To obtain a formally correct

fourth-order energy, we need to keep the induced three-body terms, e.g., use the IM-SRG(3)

truncation or some appropriate approximation, as, for instance, in CC with singles, doubles,

and perturbative triples (CCSD(T)).

We stress, however, that the perturbative analysis will not provide us with a means to

judge the IM-SRG truncation error in nuclear physics applications, aside from a guaranteed

linear scaling of the error with the particle number A due to size extensivity [16, 118].

In the remainder of this section, we will analyze the IM-SRG in greater detail. The main

goal of this analysis is to provide an understanding of how the IM-SRG relates to other dia-

grammatic methods like finite-order MBPT, the Self-Consistent Green’s Function approach

[19, 76, 119], or the Coupled Cluster method, which can be analyzed diagrammtically along

the same lines as the IM-SRG (see, e.g., [16]).

As mentioned above, we choose a HF Slater determinant as the reference state |Φ〉 for

the IM-SRG and the MBPT expansion. Then fph(s) vanishes for s = 0 (because of the

HF equations) and s→∞ (because of the IM-SRG decoupling condition), and we will only

have to discuss canonical HF MBPT diagrams in the language of [16]. The inclusion of non-

HF (where fph 6= 0) and non-canonical HF diagrams (where fpp′ , fhh′ are non-diagonal) is

straightforward but tedious because their number grows much more rapidly than the number
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of canonical HF diagrams [16].

3.5.2 Power Counting

In the following discussion, we will use superscripts to indicate the order of individual terms

in the IM-SRG flow equations. Let us first address the subtleties in the power counting that

was defined in Eqs. (3.62) and (3.64). The natural orbitals for a HF Slater determinat |Φ〉

are the HF orbitals, which means that f(0) is diagonal in the particle and hole blocks of

the s.p. basis, and fph(0) = fhp(0) = 0. Since these are the off-diagonal matrix elements

defining the one-body part of the generator (3.23), ηab vanishes as well, and the one-body

flow equation at s = 0 becomes

df12

ds

∣∣∣∣
s=0

=
∑
abc

(nanbn̄c + n̄an̄bnc)(1 + P12)η
[1]
c1abΓ

[1]
abc2 + . . . . (3.65)

Thus, corrections to f start at O(g2) (cf. Sec. 3.2.5), and we have

fpp′(s) = f
[0]
p δpp′ + f

[2]

pp′(s) + . . . , (3.66)

fhh′(s) = f
[0]
h δhh′ + f

[2]

hh′(s) + . . . , (3.67)

fph(s) = f
[2]
ph (s) + . . . , (3.68)

where the notation f
[0]

indicates that the term does not depend on s. It immediately follows

that corrections and s-dependence of the Møller-Plesset energy denominators also appear at
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O(g2),

∆ab(s) = ∆
[0]
ab + ∆

[2]
ab + . . . , (3.69)

∆abcd(s) = ∆
[0]
abcd + ∆

[2]
abcd + . . . . (3.70)

Consequently,the generator matrix elements are given by

ηph =
f

[2]
ph

∆
[0]
ph

+
f

[3]
ph

∆
[0]
ph

+
f

[4]
ph

∆
[0]
ph

+
f

[2]
ph∆

[2]
ph(

∆
[0]
ph

)2 +O(g5) , (3.71)

ηpp′hh′ =
Γ

[1]

pp′hh′

∆
[0]

pp′hh′
+

Γ
[2]

pp′hh′

∆
[0]

pp′hh′
+

Γ
[3]

pp′hh′

∆
[0]

pp′hh′
+

Γ
[1]

pp′hh′∆
[2]

pp′hh′(
∆

[0]

pp′hh′
)2 +O(g4) , (3.72)

and their Hermitian conjugates. Based on these considerations, we will proceed to discuss the

one- and two-body flow equations at increasing orders O(gn). Since the energy flow equation

does not feed back into the flow for f and Γ, we will discuss it separately afterwards.

3.5.3 O(g) Flow

As shown in the previous section, corrections to the one-body Hamiltonian f only begin to

contribute at O(g2), hence

ḟ
[1]
12 = 0 ⇒ f

[1]
12 (s) = 0 , (3.73)

where the dot indicates the derivative with respect to s. The first-order contribution to the

two-body flow comes from the first line of Eq. (3.10):

Γ̇
[1]
1234 = −

∑
a

{
(1− P12)(f

[0]
1aη

[1]
a234)− (1− P34)(f

[0]
a3η

[1]
12a4)

}
, (3.74)
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where we have used Eqs. (3.71) and (3.72), and f [1] = 0. Since η only has pphh and hhpp

matrix elements and f [0] is diagonal, we have

Γ̇
[1]

pp′hh′ = −
(
f

[0]
p + f

[0]

p′ − f
[0]
h − f

[0]

h′
)
η

[1]

pp′hh′

= −∆
[0]

pphh′η
[1]

pp′hh′ , (3.75)

and an analogous equation for the Hermitian conjugate, while Γ̇
[1]
1234 = 0 otherwise. Thus,

the flow equations can be integrated easily, and we obtain

Γ
[1]
abcd(s) = Γ

[1]
abcd ×


e−s for abcd = pp′hh′, hh′pp′ ,

1 otherwise ,

(3.76)

with

Γ
[1]
abcd ≡ Γabcd(0) . (3.77)

3.5.4 O(g2) Flow

We begin our discussion with the second-order contribution to f . Using Eq. (3.76), the

IM-SRG flow equation (3.9) yields

ḟ
[2]

pp′ =
1

2

∑
p′′hh′

(
η

[1]

p′′phh′Γ
[1]

hh′p′′p′ + η
[1]

p′′p′hh′Γ
[1]

hh′p′′p

)

=
1

2

∑
p′′hh′

Γ
[1]

p′′phh′Γ
[1]

hh′p′′p′

 e−2s

∆
[0]

p′′ph′hh′
+

e−2s

∆
[0]

p′′p′h′hh′


≡ 2f

[2]

pp′e
−2s . (3.78)

73



The flow equations for the other matrix elements of f [2](s) have the same structure, consisting

of an s-independent amplitude and a function containing a decaying exponential in s. With

the initial value condition f [2](0) = 0, we obtain

f
[2]
ab (s) = f

[2]
ab ×


(1− e−2s) for ab = pp′, hh′ ,

se−s for ab = ph, hp .

(3.79)

For s → ∞, the IM-SRG builds up and adds the amplitudes f
[2]

pp′ and f
[2]

hh′ to the effective

one-body Hamiltonian, which precisely correspond to the second-order contributions from

MBPT. We can express them succinctly in terms of the antisymmetrized Goldstone diagrams

shown in Fig. 3.12:

f
[2]

pp′ =
1

2

(
(f1)pp′ +

(
p↔ p′

))
, (3.80)

f
[2]

hh′ =
1

2

(
(f2)hh′ +

(
h↔ h′

))
, (3.81)

f
[2]
ph = (f3)ph + (f4)hp . (3.82)

The rules for interpreting such diagrams are derived in most many-body texts, so we only

summarize them in Appendix C for convenience. For the particle-hole matrix elements, we

have

f
[2]
ph (0) = f

[2]
ph (∞) = 0 , (3.83)

because we start with a HF Slater determinant and demand that the reference state is

again decoupled from 1p1h excitations for s → ∞. At intermediate stages of the flow, the

amplitudes f
[2]
ph and f

[2]
hp contribute to the build-up of higher-order MBPT diagrams.
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p

h′

h p h h p

f1 f2 f3 f4

Figure 3.12: Antisymmetrized Goldstone diagrams for the O(g2) effective one-body Hamil-
tonian (see text). Interpretation rules are summarized in Appendix C.

For the second-order two-body vertex Γ[2], the same kind of analysis yields

Γ
[2]
abcd(s) = Γ

[2]
abcd ×



(1− e−2s) for abcd = p1p2p3p4,

h1h2h3h4,

p1h1p2h2, . . . ,

(1− e−s) for abcd = p1p2p3h,

h1h2h3p, . . . ,

se−s for abcd = p1p2h1h2,

. . . ,

(3.84)

where the dots indicate all allowed permuations and Hermitian conjugates of the explicitly

75



p3 p4

p1 p2

Γ1

h1 h2

h3 h4

Γ2

p3

p1 h p2

Γ3

p3

p1 p2 h

Γ4

p1 h2

p2 h1

Γ5

p1 h2

p2 h1

Γ6

h1 p h2

h3

Γ7

h1 h2 p

h3

Γ8

p1 h1 h2 p2

Γ9

h1 p1 p2 h2

Γ10

p1 h1 p2 h2

Γ11

p1 h1 p2 h2

Γ12

Figure 3.13: Antisymmetrized Goldstone diagrams for the O(g2) effective two-body vertex
Γ (see text). Interpretation rules are summarized in Appendix C.

given indices. The corresponding amplitudes are

Γ
[2]
p1p2p3p4

=
1

2

(
(Γ1)p1p2p3p4 + (Γ1)p3p4p1p2

)
, (3.85)

Γ
[2]
h1h2h3h4

=
1

2

(
(Γ2)h1h2h3h4

+ (Γ2)h3h4h1h2

)
, (3.86)

Γ
[2]
p1p2p3h

= (Γ3)p1p2p3h + (1− Pp1p2)(Γ4)p1p2p3h , (3.87)

Γ
[2]
p1h1p2h2

=
1

2

(
(Γ5)p1h1h2p2

+ (Γ6)h2p2p1h1

)
, (3.88)

Γ
[2]
h1h2h3p

= (Γ7)h1h2h3p
+ (1− Ph1h2

)(Γ8)h1h2h3p
, (3.89)

Γ
[2]
p1p2h1h2

= (Γ9)p1p2h1h2
+ (Γ10)h1h2p1p2

+ (1− Pp1p2)(Γ11 + Γ12)p1p2h1h2
, (3.90)

where we refer to the diagrams in Fig. 3.13. Expressions for the remaining combinations
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of indices can be obtained by using the antisymmetry and Hermiticity of Γ
[2]
abcd. Equations

(3.85)–(3.90) are given in a hybrid form, i.e., they contain explicit Hermitian conjugates and

line permutations of the diagrams. This allows us to express our analytic expressions for

the amplitudes in terms of the minimal set of diagrams in Fig. 3.13. If one envisions the

inverse problem of constructing the IM-SRG flow equations from diagrams, one would of

course include all possible diagram topologies, and express the amplitudes purely as sums of

diagrams before deriving analytic expressions.

As in the schematic discussion of the energy flow equation in Sec. 3.5.1, we also want to

keep track of induced three-body terms. The IM-SRG(3) flow equation for the three-body

vertex, Eq. (B.5), reveals that there are O(g2) contributions from products of η
[1]
abcd(s) and

Γ
[1]
abcd(s), hence we have to analyze W [2]. However, we will limit the discussion to the matrix

elements of W [2] which can actually contribute to the fourth-order corrections to the ground-

state energy (see Fig. 3.1 and the discussion Sec. 3.5.1). Integrating the O(g2) three-body

flow equation, we obtain

W
[2]
abcdef (s) = W

[2]
abcdef ×



(1− e−2s) for abcdef =

p1p2h1h2p3p4 ,

h1h2p1p2h3h4 ,

. . . ,

se−s for abcdef =

p1p2p3h1h2h3,

. . . ,

(3.91)
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p1 h1 p2 h2 p3 h3
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Figure 3.14: Antisymmetrized Goldstone diagrams for the O(g2) effective three-body vertex
W (see text). Interpretation rules are summarized in Appendix C.

where the dots again indicate allowed Hermitian conjugates and permutations of indices. In

terms of the diagrams shown in Fig. 3.14, the amplitudes are

W
[2]
p1p2h1h2p3p4

=
1

2

(
(W1)p1p2h1h2p3p4

+ (W1)h2p3p4p1p2h1

)
, (3.92)

W
[2]
h1h2p1p2h3h4

=
1

2

(
(W2)h1h2p1p2h3h4

+ (W2)p2h3p4h1h2p1

)
, (3.93)

W
[2]
p1p2p3h1h2h3

= P (p1p2/p3)P (h1h2/h3) (W3 +W4)p1p2p3h1h2h3
, (3.94)

where we have defined the three-body permutation symbols

P (ij/k) ≡ 1− Pik − Pjk , (3.95)

P (i/jk) ≡ 1− Pij − Pik . (3.96)
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Figure 3.15: Antisymmetrized Goldstone diagrams for the O(g3) effective two-body vertex Γ

(see text). Black (l) and gray vertices ( wg) correspond to Γ
[1]

(Eq. (3.77)),f
[2]

(Eqs. (3.80)–

(3.82)), Γ
[2]

(Eqs. (3.85)–(3.90)), and W
[2]

(Eqs. (3.92)–(3.94)), respectively. Interpretation
rules are summarized in Appendix C.

3.5.5 O(g3) Flow

The analysis of the third-order one- and two-body flow equations is straightforward, but the

number of terms (or diagrams) we have to consider increases significantly. Here, we content

ourselves with analyzing Γ
[3]

pp′hh′(s), the only missing ingredient for the discussion of the

energy flow equation through O(g4), as in the overview presented in Sec. 3.5.1. Using our
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results from the previous sections, the two-body flow equation can be written as

Γ̇
[3]
p1p2h1h2

≡ −Γ
[3]
p1p2h1h2

+
(
A+D

)
p1p2h1h2

se−s +
(
B + C

)
p1p2h1h2

(
e−3s − e−s

)
,

(3.97)

which is solved by

Γ
[3]
p1p2h1h2

(s) =
(
A+D

)
p1p2h1h2

s2

2
e−s −

(
B + C

)
p1p2h1h2

(
e−3s − e−s

2
+ se−s

)
.

(3.98)

The amplitudes A to D are given by the diagrams shown in Fig. 3.15, where black and

grey indices indicate the first- and second-order vertices, respectively:

Ap1p2h1h2
=
(
1− Pp1p2

)
(A1)p1p2h1h2

+
(

1− Ph1h2

)
(A2)p1p2h1h2

+ (A3 + A4)p1p2h1h2
+
(
1− Pp1p2

) (
1− Ph1h2

)
(A5)p1p2h1h2

, (3.99)

Bp1p2h1h2
= −η[2]

p1p2h1h2
∆

[2]
p1p2h1h2

+
(
1− Pp1p2

)
(B1)p1p2h1h2

+
(

1− Ph1h2

)
(B2)p1p2h1h2

+ (B3 +B4)p1p2h1h2
+
(
1− Pp1p2

) (
1− Ph1h2

)
(B5)p1p2h1h2

, (3.100)

Cp1p2h1h2
= (1− Ph1h2

) (C1)p1p2h1h2
+ (1− Pp1p2) (C2)p1p2h1h2

, (3.101)

Dp1p2h1h2
= (1− Ph1h2

) (D1)p1p2h1h2
+ (1− Pp1p2) (D2)p1p2h1h2

. (3.102)

A and B are contained in the standard IM-SRG(2) truncation, whereas C and D are leading-

order induced three-body terms. In particular, the former is a product of W
[2]

and the
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two-body generator,

Cp1p2h1h2
=

1

2
(1− Ph1h2

)
∑
p′p′′h′

W
[2]

p1h
′p2p′h1p

′′η
[1]

p′p′′h′h2

+
1

2
(1− Pp1p2)

∑
h′h′′p′

W
[2]

h1p
′h2h

′p1h′′
η

[1]

h′h′′p′p2
, (3.103)

while the latter is a product of Γ
[1]

and the three-body generator instead:

Dp1p2h1h2
=

1

2
(1− Ph1h2

)
∑
h′h′′p′

η
[2]

h′h2h
′′p1p2p′

Γ
[1]

h1p
′′h′h′′

+
1

2
(1− Pp1p2)

∑
p′p′′h′

η
[2]

p′p′′p2h1h
′h2

Γ
[1]

p1h
′p′p′′ . (3.104)

This distinction is of little consequence in the present analysis, but may become important

if the Hamiltonian and the generator are not truncated to the same particle rank. Note,

however, that the diagrams for C and D have different topologies: The former couples the

reference state to an excited 2p2h state via intermediate 2p2h excitations, whereas the latter

has intermediate 3p3h states.

By expanding the grey Γ
[2]

vertices in Fig. 3.15 in terms of Γ
[1]

, we can also see how the

IM-SRG flow performs a non-perturbative resummation of the MBPT series, as indicated in

Sec. 3.5.1. The diagram A3, for instance, is expanded as

= + + + . . . ,

(3.105)
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and contains ladder diagrams (first row), as well as diagrams where ladder and polarization

configurations interfere (second row). Such interference diagrams set the IM-SRG apart from

the traditional G-matrix and RPA approaches, which only resum ladders and polarization

diagrams, respectively [120].

3.5.6 Energy through O(g4)

Let us now consider the energy flow equation. At O(g2), we have

Ė[2] =
1

2

∑
h1h2p1p2

η
[1]
h1h2p1p2

Γ
[1]
p1p2h1h2

=
1

2

∑
h1h2p1p2

η
[1]
h1h2p1p2

Γ
[1]
p1p2h1h2

e−2s . (3.106)

Integrating this equation with E[2](0) = 0 , we obtain

E[2](s) =
1

4

(
1− e−2s

) ∑
h1h2p1p2

Γ
[1]
h1h2p1p2

Γ
[1]
p1p2h1h2

∆
[0]
h1h2p1p2

, (3.107)

i.e., E[2](∞) is just the standard second-order MBPT correction to the energy of the reference

state (cf. Fig. 3.11).

Likewise, the flow equation for the O(g3) energy reads

Ė[3] =
1

2

∑
h1h2p1p2

(
η

[1]
h1h2p1p2

Γ
[2]
p1p2h1h2

+ η
[2]
h1h2p1p2

Γ
[1]
p1p2h1h2

)

=
∑

h1h2p1p2

Γ
[1]
h1h2p1p2

Γ
[2]
p1p2h1h2

∆
[0]
h1h2p1p2

e−2s (3.108)
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and integration yields

E[3](s) =
1

4

(
1− (2s+ 1)e−2s

) ∑
h1h2p1p2

Γ
[1]
h1h2p1p2

Γ
[2]
p1p2h1h2

∆
[0]
h1h2p1p2

. (3.109)

For s→∞,

E[3](∞) =
1

4

∑
h1h2p1p2

Γ
[1]
h1h2p1p2

Γ
[2]
p1p2h1h2

∆
[0]
h1h2p1p2

, (3.110)

and plugging in Γ
[2]

from Eq. (3.90), this immediately becomes

E[3](∞) = + + , (3.111)

the standard third order energy correction.

At O(g4), we have to consider products of η[2] and the second-order Hamiltonian contri-

butions f [2],Γ[2], and W [2] (cf. Fig. 3.11), as well as the cross terms

E
[4]
3−1 =

1

2

∑
p1p2h1h2

(
η

[3]
h1h2p1p2

Γ
[1]
p1p2h1h2

+ [η ↔ Γ]
)

=
1

2

∑
p1p2h1h2

−Γ
[1]
h1h2p1p2

∆
[2]
h1h2p1p2

∆
[0]
h1h2p1p2

+ 2Γ
[3]
h1h2p1p2

× Γ
[1]
p1p2h1h2

∆
[0]
h1h2p1p2

. (3.112)

The first term is due to the expansion of the energy denominator in η[3] to second order

(cf. Sec. 3.5.2). However, it is easy to see that contributions from this term cancel in the

sum, because ∆
[0/2]

pp′hh′ is antisymmetric under transposition while Γ
[1]

pp′hh′ is symmetric. Thus,
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Figure 3.16: Connected Hugenholtz diagrams for the fourth-order energy correction E(4)

(Ref. [16]).
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the energy flow equation becomes

Ė[4] = 2s2e−2s
∑
ph

η
[2]
hpf

[2]
ph +

s2

2
e−2s

∑
p1p2h1h2

η
[2]
h1h2p1p2

Γ
[2]
p1p2h1h2

+
s2

18
e−2s

∑
p1p2p3h1h2h3

η
[2]
h1h2h3p1p2p3

W
[2]
p1p2p3h1h2h3

+
s2

2
e−2s

∑
p1p2h1h2

(
A+D

)
h1h2p1p2

Γ
[1]
p1p2h1h2

∆h1h2p1p2

−
(
e−4s − e−2s

2
+ se−s

) ∑
p1p2h1h2

(
B + C

)
h1h2p1p2

Γ
[1]
p1p2h1h2

∆h1h2p1p2

. (3.113)

Integrating and taking the limit s→∞, we obtain the fourth-order energy correction

E[4](∞) =
1

2

∑
ph

η
[2]
hpf

[2]
ph +

1

8

∑
p1p2h1h2

η
[2]
h1h2p1p2

Γ
[2]
p1p2h1h2

+
1

72

∑
p1p2p3h1h2h3

η
[2]
h1h2h3p1p2p3

W
[2]
p1p2p3h1h2h3

+
1

8

∑
p1p2h1h2

[(
A−B

)
h1h2p1p2

+
(
D − C

)
h1h2p1p2

] Γ
[1]
p1p2h1h2

∆h1h2p1p2

≡ E
[4]
f + E

[4]
Γ + E

[4]
W + E

[4]
A + E

[4]
B + E

[4]
C + E

[4]
D . (3.114)

In Fig. 3.16, we show all fourth-order Hugenholtz energy diagrams for the canonical HF

case (see Sec. 3.5.1 and Ref. [16])). It is a straightforward but arduous task to identify the

diagrammtic content of the individual contributions to E[4] by plugging the expressions for
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the amplitudes from the previous sections into (3.114). We find

E
[4]
f =

1

2

4∑
i=1

Si , (3.115)

E
[4]
Γ =

1

2

12∑
i=1

Di , (3.116)

E
[4]
W =

1

2

16∑
i=1

Ti , (3.117)

E
[4]
A =

1

2

(
4∑
i=1

Si +
12∑
i=1

Di

)
, (3.118)

E
[4]
B = Q3 +Q4 +Q5 +

1

2
(Q1 +Q2 +Q6 +Q7) , (3.119)

E
[4]
C =

1

2
(Q1 +Q2 +Q6 +Q7) , (3.120)

E
[4]
D =

1

2

16∑
i=1

Ti , (3.121)

so E[4](∞) contains all required diagrams, and is indeed the complete fourth-order energy.

3.5.7 Discussion

As concluded on general grounds in Sec. 3.5.1, the IM-SRG(2) energy is complete to third

order in MBPT, but misses certain contributions in fourth order. Our detailed analysis

shows that

E
[4]
IM-SRG(2)

= E
[4]
f + E

[4]
Γ + E

[4]
A + E

[4]
B

=
4∑
i=1

Si +
12∑
i=1

Di +Q3 +Q4 +Q5 +
1

2
(Q1 +Q2 +Q6 +Q7) , (3.122)
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i.e., IM-SRG(2) contains the complete fourth-order singles and doubles contributions, as well

as the symmetric and half of the antisymmetric quadruples diagrams shown in Fig. 3.16.

In the discussion of Fig. 3.7 in Sec. 3.3.4, we have observed that the IM-SRG(2) ground-

state energy of 40Ca for the chiral NN Hamiltonian with λ = 2.0 fm−1 lies between Coupled

Cluster results at the CCSD and Λ−CCSD(T) level [16, 93, 94]. Overall, the three methods

agree within a few percent of the total ground-state energy. This pattern has consistently

emerged in all our IM-SRG calculations for finite nuclei with softened chiral interactions

(resolution scales λ ∼ 2 fm−1), both with and without 3N forces [21, 23, 58, 74]. The

diagrammatic content of these methods through fourth order explains this behavior, at least

qualitatively. In terms of the quantities (3.115)–(3.121) defined in the previous subsection,

the fourth-order energy contributions to CCSD and Λ−CCSD(T) are

E
[4]
CCSD = E

[4]
f + E

[4]
Γ + E

[4]
A + E

[4]
B + E

[4]
C

=
4∑
i=1

Si +
12∑
i=1

Di +
7∑
i=1

Qi , (3.123)

and

E
[4]
Λ−CCSD(T)

= E
[4]
f + E

[4]
Γ + E

[4]
W + E

[4]
A + E

[4]
B + E

[4]
C + E

[4]
D

=
4∑
i=1

Si +
12∑
i=1

Di +
16∑
i=1

Ti +
7∑
i=1

Qi , (3.124)

respectively. In a typical calculation, CCSD ground-state energies are too high due to missing

correlation energy from attractive fourth-order 3p3h (triples) configurations that are included

in Λ−CCSD(T) through E
[4]
W,D. In all our calculations, the asymmetric quadruples diagrams

Q1,2,6,7 (cf. Fig. 3.16) are repulsive. The IM-SRG(2) misses half of this repulsion, namely
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Figure 3.17: Effect of fourth-order quadruples (4p4h) contribution E
[4]
C , Eq. (3.120) on the

ground-state energies of 4He, 16O, and 40Ca (see text): Comparison of IM-SRG(2) with and

without E
[4]
C , calculated with the initial Hamiltonian H(0), to CCSD and Λ−CCSD(T). All

calculations used the chiral N3LO Hamiltonian with λ =∞ in an emax = 14 single-particle
basis. The shown CC values were taken at optimal ~ω.

the E
[4]
C term, and mocks up missing attraction from the triples terms E

[4]
W,D in this way.

Let us now consider the implications of our analysis for calculations with the unevolved

chiral N3LO Hamiltonian. Referring back to Fig. 3.7 again, there is a larger variation

between the 40Ca ground-state energies from IM-SRG(2), CCSD, and Λ−CCSD(T). This is

expected because of the Hamiltonian’s higher resolution scale, which adversely affects the

many-body convergence. We find an IM-SRG(2) ground-state energy that is lower than that

of Λ−CCSD(T), which contains the complete fourth-order energy and is therefore expected

to be a better approximation to the exact result from the MBPT point of view. A similar

observation was made for 4He in the first published IM-SRG study [58], where the IM-

SRG(2) ground-state energy of −27.6 MeV was found to be about 2 MeV lower than the

Λ−CCSD(T) and exact NCSM results. This motivated the development of a perturbative

truncation scheme that is discussed in Sec. 3.5.8, but no longer used in practice.
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In Fig. 3.17, we show the effect of adding the fourth-order quadruples term E
[4]
C to the IM-

SRG(2) ground-state energies of 4He, 16O, and 40Ca. In light of our perturbative analysis,

especially Eqs.(3.122) and (3.123), it is not surprising that the repulsive contributions from

this term shift the ground-state energies in close proximity to the the CCSD results, which

are shown for reference. The agreement is not exact due to fifth- and higher-order differences

in the perturbative content of IM-SRG(2) and CCSD.

Finally, we want to remark on the different origins of the induced three-body vertices

which contribute to E
[4]
C and E

[4]
D , as pointed out in the discussion of Eqs. (3.103) and (3.104)

in Sec. 3.5.5. This is relevant for asymmetric truncations of H and η at different particle

rank, and the development of approximations to the full IM-SRG(3) scheme by the selective

addition of terms to the IM-SRG(2) flow equations. E
[4]
C is a product of W

[2]
and the two-

body generator, while E
[4]
D is a product of Γ

[2]
and the three-body generator. Thus, it is

sufficient to consider only the induced three-body interaction W to fully include the fourth-

order quadruples3. A full inclusion of fourth-order triples requires the induced three-body

interaction as well as the use of a three-body generator.

3.5.8 Perturbative Truncations

As discussed repeatedly throughout this work (see, e.g., Secs. 3.3.4, 3.5.1), order-by-order

convergence of a many-body perturbation expansion strongly depends on the resolution

scale of the Hamiltonian, and the choice of reference state on which the perturbation series

is constructed. This is particularly true for the case of nuclear Hamiltonians [33, 51, 92, 122,

3In Ref. [121], Evangelista and Gauss have demonstrated that E
[4]
C is not included in a modified CCSD

scheme if intermediate terms in the nested commutators are only expanded up to two-body operators. These
intermediates correspond to the pieces of W that are induced by the commutator of two-body operators,

hence the mechanism for generating E
[4]
C is very similar in CC and IM-SRG.
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123]. Nevertheless, it is worthwhile to attempt and organize the right-hand side of the IM-

SRG flow equation — essentially, the β function of the IM-SRG flow (see, e.g., [124, 125])

— in terms of a perturbative expansion, which is a common feature of RG approaches

throughout all fields of physics.

Based on the power counting from Eqs. (3.62) and (3.64), an earlier work [58] introduced

a perturbative truncation which eliminates terms of O(g3) from the flow equations (3.8)–

(3.10):

dE

ds
=

1

2

∑
abcd

ηabcdΓcdabnanbn̄cn̄d , (3.125)

df12

ds
=
∑
a

(1 + P12)η1afa2

+
∑
abc

(nanbn̄c + n̄an̄bnc)(1 + P12)ηc1abΓabc2 , (3.126)

dΓ1234

ds
= −

∑
a

{(1− P12)f1aηa234 − (1− P34)fa3η12a4}

+
1

2

∑
ab

(1− na − nb)(η12abΓab34 − Γ12abηab34)

−
∑
ab

(na − nb)(1− P12)(1− P34)ηb2a4Γa1b3 . (3.127)

We will refer to this truncation scheme as IM-SRG(2’) in the following4.

The integration of the IM-SRG(2’) flow equation yields a third-order complete energy,

while certain contributions from fourth order onward are missing. Using the same definitions

4 (Note that the labeling was reversed in Ref. [58], which primarily used this perturbative truncation
scheme for numerical calculations.
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Figure 3.18: Comparison of 40Ca ground-state energies of the regular IM-SRG(2) (solid lines)
and perturbative IM-SRG(2’) truncations (dashed lines). The default White generator ηIA,
Eq. (3.23), was used in both cases. The interaction is the chiral N3LO potential with λ =∞
(left and center panels) and λ = 2.0 fm−1 (right panel), respectively. The dashed lines
indicate extrapolated energies. For the IM-SRG(2’) truncation, the shaded area indicates
the variation from using different data sets for the extrapolation (see text).

as in Eq. (3.114), we find that

E
[4]
IM-SRG(2’)

= E
[4]
Γ + (E

[4]
A − E

[4]
f ) + E

[4]
B

=
12∑
i=1

Di +Q3 +Q4 +Q5 +
1

2
(Q1 +Q2 +Q6 +Q7) , (3.128)

i.e., the IM-SRG(2’) does not contain the fourth-order singles contribution. This is caused by

the absence of the single-particle term in the energy flow equation (3.125), and the diagrams

A1 and A2 from the amplitude A (see Fig. 3.15 and Eq. (3.99)).

In Fig. 3.18, we compare 40Ca ground-state energies obtained with the regular and per-

turbative truncations. For the soft N3LO interaction with λ = 2.0 fm−1, shown in the right

panel, the two truncations give almost identical results. The agreement between ground-

state energies is on the level of 10−4 or better, with extrapolated energies for 40Ca differing

91



by only 2 keV.

For the bare interaction, on the other hand, the truncation schemes behave quite dif-

ferently. The IM-SRG(2) ground-state energy has a quasi-variational convergence pattern,

which allows us a stable extrapolation to infinite HO basis size. The IM-SRG(2’) trunca-

tion’s ground-state energy minimum is still moving to larger ~ω for the considered bases,

indicating a lack of UV convergence, and the variational pattern breaks down as we increase

emax from 12 to 14. Extrapolation from different subsets of the calculated energies using

Eq. (3.51) produces large uncertainties which are indicated by the shaded band in Fig. 3.18.

As discussed above, the IM-SRG(2’) ground-state energy, Eq. (3.128), does not contain

the fourth-order singles. In Fig. 3.19, we demonstrate that the omission of this contribution

accounts for the bulk of the energy difference between IM-SRG(2) and IM-SRG(2’), using

40Ca as an example. Moreover, the addition of the fourth-order singles restores the varia-

tional behavior of the ground-state energy as a function of the single-particle basis size emax.

Compared to the regular IM-SRG(2), the IM-SRG(2’) flow equations lack O(g3) contractions

of f and Γ with the two- and one-body parts of η, respectively. The effect of this omission on

the two-body matrix element is hard to analyze in greater detail, in part due to their sheer

number. To test the impact of the missing terms on the flowing one-body Hamiltonian, we

calculate the Baranger effective single-particle energies (ESPEs) by diagonalizing the final

f(∞) in both truncations (see [126–128]). The neutron and proton sd− and pf−shell ESPEs

in 40Ca are shown in Fig. 3.20, and we find that the results obtained with IM-SRG(2) and

IM-SRG(2’) are practically indistinguishable.

We conclude by following up on the perturbative analysis of the difference between IM-

SRG(2) and CC results with the unevolved chiral N3LO Hamiltonian that was begun in

Sec. 3.5.7. In Ref. [58], the overestimation of the 4He ground-state energy in IM-SRG(2) cal-
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results were obtained for the chiral N3LO Hamiltonian with λ =∞.
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Figure 3.20: Effective neutron (left panel) and proton (right panel) single-particle energies
of 40Ca from IM-SRG(2) (solid lines) and IM-SRG(2’) (dashed lines) calculations using the
chiral N3LO interaction with λ =∞ in an emax = 14 single-particle basis.

culations when compared to Λ−CCSD(T) and exact NCSM results was the main motivation

for the investigation of the IM-SRG(2’) truncation. The IM-SRG(2’) result closely matches
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the CCSD result for 4He, −23.98 MeV, but the present discussion reveals this agreement as

accidental, an artifact of the omission of attractive fourth-order singles producing a similar

change in the ground-state energy as the addition of the repulsive quadruples term E
[4]
C

(see the discussion in Sec. 3.5.7). While both truncations work equally well for sufficiently

soft, perturbative nuclear Hamiltonians, the IM-SRG(2) truncation remains well-behaved

at higher resolution scales, at the same computational cost, which is why we favor this

truncation scheme in practical applications.
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Chapter 4

Magnus Formulation

4.1 Introduction

Chapter 3 demonstrated the effectiveness of the IM-SRG(2) method for ground state calcula-

tions of nuclei at (sub)shell closures. However, we now need to address the primary computa-

tional limitations of the method as it was presented. The IM-SRG calculations presented in

chapter 3 typically use ODE solvers based on high-order Runge-Kutta or predictor-corrector

methods to solve Eq. 3.2. The use of these high-order methods is essential as the accumula-

tion of time-step errors will destroy the unitary equivalence between H(s) and H(0), even if

no truncations are made in the flow equations. State-of-the-art solvers can require the storage

of 15-20 copies of the solution vector in memory, which becomes problematic for large model

spaces. For example, a typical Oxygen calculation in a basis set corresponding to an emax

of 12, IM-SRG(2) calculations require around 30 GB to run. This large memory footprint is

exacerbated if one wants to calculate additional observables, roughly doubling the memory

requirements assuming the same NO2B truncation as for the Hamiltonian. Moreover, the

additional flow equations for each observable can evolve with rather different timescales than

the Hamiltonian, which increase the likelihood of the ODEs becoming stiff. In this chapter,

we will demonstrate that these difficulties can be circumvented by recasting Eq. (3.2) with

the Magnus expansion[129]. The new formulation is convenient for establishing improved

truncations to be discussed in chapter 5. The presentation follows a recent publication in
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Ref. [130].

4.2 Formalism

In the notation of our present problem, our starting point is the differential equation obeyed

by the unitary transformation,

dU(s)

ds
= −η(s)U(s) , (4.1)

where U(0) = 1 and U†(s)U(s) = U(s)U†(s) = 1. This can be formally integrated and

written as the time-ordered exponential

U(s) = Ts
{
e−
∫ s
0 η(s′)ds′} (4.2)

≡ 1−
∫ s

0
ds′η(s′) +

∫ s

0
ds′
∫ s′

0
ds′′η(s′)η(s′′) + . . .

(4.3)

Eq. 4.3 is not very useful in practical calculations since i) there is no guidance on how the

series should be truncated, ii) one would need to store η for multiple s-values, and iii) it is

not obvious how to consistently transform the Hamiltonian and other observables in a fully

linked, size-extensive manner with the truncated series.

The essence of the Magnus expansion is that, given a few technical requirements on η(s),

a solution to Eq. 4.1 of the form

U(s) = eΩ(s) (4.4)

exists, where Ω†(s) = −Ω(s) and Ω(0) = 0 [131]. In most previous applications of the
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Magnus expansion, one typically expands Ω(s) in powers of η(s) as

Ω =
∞∑
n=1

Ωn . (4.5)

Combining this with the exact derivative

dΩ

ds
=
∞∑
k=0

Bk
k!
adkΩ(η)

ad0
Ω(η) = η

adkΩ(η) = [Ω, adk−1
Ω (η)] ,

(4.6)

where Bk are the Bernoulli numbers and adkΩ(η) the recursively defined nested commutators,

one can obtain explicit expressions for the Ωn(s),

Ω1(s) = −
∫ s

0
ds1η(s1)

Ω2(s) =
1

2

∫ s

0
ds1

∫ s1

0
ds2[η(s1), η(s2)]

...

(4.7)

As expected, rewriting the time-ordered exponential as a true matrix exponential moves

the complications of time ordering into the expression for Ω(s). The utility of the Magnus

expansion lies in the fact that, even if Ω is truncated to low-orders in η, the resulting

transformation in Eq. 4.4 using the approximate Ω is unitary, in contrast to any truncated

version of Eq. 4.2.

For large-scale IM-SRG calculations, the expressions in Eq. 4.7 are of limited value since

they require the storage of η(s) over a range of s-values. Therefore, in the present work we
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instead construct Ω(s) by numerically integrating Eq. 4.6, subject to certain approximations

discussed below. The transformed Hamiltonian, and any other operator of interest, can then

be constructed by applying the Baker-Cambell-Hausdorff (BCH) formula,

H(s) = eΩH e−Ω =
∑∞
k=0

1
k!ad

k
Ω(H) (4.8)

O(s) = eΩO e−Ω =
∑∞
k=0

1
k!ad

k
Ω(O) . (4.9)

4.3 Analytical Model

Before discussing how we truncate Eqs. 4.6 and 4.8 in practical calculations, it is instructive

to study a simple matrix model that can be solved without any truncations. Consider the

initial Hamiltonian

H = T + V =

1 1

1 −1

 , (4.10)

where the diagonal “kinetic energy” term is

T =

1 0

0 −1

 . (4.11)

Let us now try to diagonalize H using the Wegner generator presented in chapter 3, making

η(s) = [T,H(s)], solving the SRG equations using the Magnus expansion and by direct

integration of Eq. 3.2. Note that for this choice of initial H, both η(s) and Ω(s) are real,
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antisymmetric matrices throughout the flow

η(s) = igη(s)σ2 (4.12)

Ω(s) = igΩ(s)σ2 , (4.13)

where σ2 is the Pauli matrix. Consequently, Eq. 4.6 terminates at the first term and Eq. 4.8

can be summed up to all orders using the well-known properties of Pauli matrices. This

simplicity also allows for an analytical solution for H(s) = gT (s)T + gV (s)V , where

gT (s) =
√

2tanh(
√

32s+ arcsinh(1)) (4.14)

gV (s) =
√

2sech(
√

32s+ arcsinh(1)) . (4.15)

The large memory footprint of high-order adaptive solvers is the main computational chal-

lenge in large-scale SRG calculations, so in addition to using a Gordon-Shampine integrator

to solve Eqs. 3.2, we demonstrate what happens when a naive first-order Euler method

is used to integrate Eqs. 3.2 and 4.6. The results are shown in Fig. 4.1, where we plot

|H11(s) − Egs| – which should go to zero at large s – versus s for different Euler step sizes

δs. Unsurprisingly, we see that the direct integration of Eq. 3.2 accumulates large time-step

errors, with the plateaus at large s displaying a strong dependence on the Euler step size.

Even when Eq. 3.2 is integrated with a high-order method with very conservative absolute

and relative tolerances of 1e−12, the solution fails to produce the exact answer. The Magnus

solution, on the other hand, converges to a final answer at large s that is independent of

step size and agrees with the exact result to within machine precision. Even more, the naive

Euler step with δs = .001 is indistinguishable from the analytical result. The insensitivity
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Figure 4.1: |H11(s)−Egs| versus s for different Euler step sizes calculated via direct integra-
tion of the SRG flow equation, Eq. 3.2, and using the Magnus expansion, Eqs. 4.6 and 4.8.
Also plotted is the integration of Eq. 3.2 with the Gordon-Shampine integrator.

to the time step size is due to the fact that while each Euler step in Eq. 4.6 gives an error

of order O(δs2), the exponentiated operator at the end of the evolution is still unitary. This

is the primary advantage of the Magnus expansion; by reformulating the problem to solve

flow equations for Ω(s) instead of H(s), one can use a simple first-order Euler method and

dramatically reduce memory usage. Once Ω(s) is in hand, the transformation of H(s) and

any other observables of interest immediately follows from Eq. 4.8. Note that in contrast to

the direct integration of Eq. 3.2, the dimensionality of the flow equations does not increase

when one evolves additional observables.
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4.4 MAGNUS(2) Approximation

Having illustrated the advantages of the Magnus expansion in a simple model, we would

now like to apply it large-scale many-body calculations. Before going into necessary ap-

proximations, it is instructive to highlight how the Magnus formulation of the IM-SRG

makes the connection to coupled cluster theory more tangible. We recall from chapter 2

that closed shell coupled cluster theory is centered in the philosophy of decouping a single

reference from higher excitations via a non-hermitian similarity transformed Hamiltonian

H̄ = e−THeT . The IM-SRG is also based on this same philosophy, but within the Magnus

approach, the means of doing so become more transparent. We are now solving the hermitian

H(s) = eΩ(s)He−Ω(s), which bears more than passing similarity to H̄.

Unlike in coupled cluster theory where the BCH formula for the similarity transformed

Hamiltonian terminates at finite order, both Eqs. 4.6 and 4.8 involve an infinite-order series

of nested commutators that generate up to A-body operators. Thus, to make progress, we

introduce the MAGNUS(2) truncation in which all commutators (as well as Ω(s), η(s) and

H(s)) are truncated to the NO2B level. Even with this approximation, the expressions for

dΩ/ds and H(s) involve an infinite number of terms. However, for both Eqs. 4.6 and 4.8 at

the NO2B level, we empirically find that the magnitude of terms decreases monotonically in

k for all systems studied thus far. Therefore, we numerically truncate Eqs. 4.6 at the kth

term if ∣∣∣∣Bk‖adkΩ(η)‖
k!‖Ω‖

∣∣∣∣ < εderiv . (4.16)

For the truncation of (4.8), we could use a similar criteria as for the derivative expression.

However, since we are interested in the ground-state energy, we use a simpler condition where
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the series is truncated when the zero-body piece of the kth term falls below some threshold,

∣∣∣∣{adkΩ(H)}0b
k!

∣∣∣∣ < εBCH . (4.17)

In the calculations presented below, we will find that the final results are insensitive to

large variations in εderiv and εBCH, which we take as an a posteriori justification for our

truncations.

4.5 Hamiltonians and Implementation

Before presenting the results of IM-SRG(2) and MAGNUS(2) calculations of the homoge-

neous electron gas (HEG) and 16O, we review some details of our implementations for both

systems. For the homogeneous electron gas, we perform our calculations for the closed-shell

configuration of N = 14 electrons in a cubic box with periodic boundary conditions. Note

that if one is interested in extrapolating to the thermodynamic limit, calculations should

be done for a larger closed-shell configurations of N = 38, 54, 66, . . . electrons, with finite-

size corrections for the kinetic and potential energy taken into account. Here we neglect

these corrections since our primary purpose is to demonstrate the effectiveness of the Mag-

nus expansion, and the quasi-exact Full Configuration Interaction Quantum Monte Carlo

(FCIQMC) results we compare against also neglect these corrections [3]. The relevant single

particle orbitals are plane waves with quantized momenta

ψkσ(r) =
1√
L3
eik·rχσ , (4.18)
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where L3 is the box volume, χσ is a spin eigenfunction, and k = 2π
L (nx, ny, nz) where

nx, ny, and nz are integers. We follow common practice and use the Wigner-Seitz radius to

characterize the density of the HEG,

rs =
r0
a0
, (4.19)

where a0 is the Bohr radius and r0 is defined in terms of the density as

4

3
πr3

0 =
N

L3
. (4.20)

We use a basis set truncation which keeps M single particle states with energy less than

some cutoff Ec, although other choices are possible [132].

In the plane wave basis, the kinetic energy matrix elements are diagonal

Ti,j =
1

2
ki

2δij , (4.21)

and the Coulomb matrix elements are given by

Vijkl =
1

L3

1

q2
δσi,σkδσj,σlδq,ki−kkδq,kl−kj . (4.22)

Note that the q = 0 term is omitted due to its cancellation against the inert, uniform

positively charged background that is needed to make the system charge neutral [133]. Since

we are interested primarily in the correlation energy, we have omitted the Madelung term in

all of our calculations.
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For the calculations of 16O, our starting point is the intrinsic nuclear A-body Hamiltonian

H =

(
1− 1

A

)
T + T (2) + V (2) , (4.23)

where T (2) is the two-body part of the intrinsic kinetic energy, and we restrict our attention to

two-nucleon interactions only. Results are presented for input NN interactions derived from

the N3LO (500 MeV) potential of Entem and Machleidt [17] at several different free-space

SRG resolution scales, λ = 2.0, 2.7, and 3.0 fm−1.

In both MAGNUS(2) and IM-SRG(2) calculations, we start by normal ordering the

Hamiltonian with respect to the HF ground state. In the case of the HEG, translational

invariance implies the HF orbitals are plane waves. Therefore, the HF reference state is just

a Slater determinant comprised of the lowest energy doubly occupied plane wave states for

N = 14 electrons. For 16O, we must self-consistently solve the Hartree-Fock equations by ex-

panding the unknown HF orbitals in a harmonic oscillator basis truncated to oscillator states

obeying 2n+ l ≤ emax, where emax is sufficiently large so that the results are approximately

independent of the ~ω value of the underlying oscillator basis. For the NN interactions used

in the present calculations, a cutoff of emax = 8 is sufficiently large for most purposes. Once

a converged HF ground-state is obtained, the Hamiltonian is normal-ordered w.r.t. to this

solution, and the resulting in-medium zero-, one-, and two-body operators serve as the initial

values for the MAGNUS(2) and IM-SRG(2) flow equations. These are subsequently inte-

grated until sufficient decoupling is achieved, as determined by the size of the second-order

many-body perturbation theory MBPT(2) contribution of the flowing Hamiltonian H(s) to

the ground state energy. We use a threshold of 10−6 Hartree (MeV) for the HEG (16O)

calculations, respectively, which corresponds to relative changes in the flowing ground-state
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Figure 4.2: Relative importance of the kth term in the Magnus derivative as defined by the
lefthand side of Eq. 4.16 evaluated in the NO2B approximation. The top row is for the
homogeneous electron gas at Wigner-Seitz radii of a) rs = 0.5 and b) rs = 5.0. The bottom
row is for 16O, starting from the chiral NN potential of Entem and Machleidt [17], softened
by a free-space SRG evolution to (c) λ = 2.0 fm−1 and (d) λ = 3.0 fm−1. The electron gas
calculations were done for N = 14 electrons in a periodic box with M = 114 single particle
orbitals. The 16O calculations were done in an emax = 8 model space, with ~ω = 24 MeV
for the underlying harmonic oscillator basis.

energy of 10−7 or less for both systems.

4.6 Results

We begin by examining the numerical evidence for truncating Eqs. 4.6 and 4.8 by hand. In

Figure 4.2, we plot the lefthand side of Eq. 4.16 for the HEG (top row) and 16O (bottom row)

as a function of the flow parameter. To assess the role of correlations, the HEG calculations

were performed at two different Wigner-Seitz radii, rs = 0.5 and rs = 5.0, and the 16O
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calculations were done using NN interactions at two different resolution scales, λ = 2.0 fm−1

and λ = 3.0 fm−1. For the HEG, the rs = 0.5 contributions are completely negligible by

the k = 2 term, which is not surprising since the kinetic energy dominates in this weakly

correlated high-density regime [133]. Even for the rs = 5.0 case, where correlations and non-

perturbative effects start to become sizable, one finds that the successive terms in Eq. 4.6

decrease monotonically, though the individual terms are substantially larger than for the

rs = 0.5 case. Analogous results are found for 16O; the individual terms are larger for

the harder λ = 3.0 fm−1 interaction since the system is more strongly correlated, but they

systematically decrease with increasing order k.

Figure 4.3 tells a similar story for the BCH formula, where the lefthand side of Eq. 4.17

is plotted as a function of the flow parameter. In all cases, we see the importance of suc-

cessive terms decreases monotonically. Reassuringly, we find that the final results in our

calculations are essentially independent of the convergence criteria provided εderiv . 10−4

and εBCH . 10−4, where the latter is in units of Hartree (MeV) for the HEG (16O) calcula-

tions, respectively. For instance, raising both convergence criteria from 10−8 to 10−4 changes

the ground state energy at the 1 eV (10−7 Hartree) level in the 16O (HEG) calculations,

respectively.

As was illustrated for the toy model in Sec. 4.2, the key advantage of the Magnus expan-

sion is that one can use a first-order Euler method to accurately solve the flow equations.

We now demonstrate that the same conclusion holds for realistic IM-SRG calculations. Re-

ferring to Figs. 4.4 and 4.5, we show the 0-body part of the flowing Hamiltonian H(s) versus

the flow parameter for the electron gas1 and 16O. The black solid lines denote the results of

a standard IM-SRG(2) calculation using the adaptive ODE solver of Shampine and Gordon,

1For the HEG, we plot E0(s)− EHF , which approaches the correlation energy at large s.

106



0 1 2 3 4 5 6
s

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

lo
g

1
0
[ 

k
th

 t
er

m
 (

H
)]

k=1
k=3
k=5

e- gas w/PBC

N = 14, r
s
 = 0.5, M = 114a)

0 1 2 3 4 5 6
s

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

lo
g

1
0
[ 

k
th

 t
er

m
 (

H
)]

k=1
k=3
k=5
k=7

e- gas w/PBC

N = 14, r
s
 = 5.0, M = 114b)

0 5 10
s

1e-08

1e-06

0.0001

0.01

1

100

lo
g

1
0
[ 

k
th

 t
er

m
 (

M
eV

)]

k=1
k=3
k=5
k=7
k=9

c)

N
3
LO (500 MeV)   λ = 2.0 fm

-116
O

0 5 10
s

1e-08

1e-06

0.0001

0.01

1

100

lo
g

1
0
[ 

k
th

 t
er

m
 (

M
eV

)]

k=1
k=3
k=5
k=7
k=9
k=11

16
O N

3
LO (500 MeV)   λ = 3.0 fm

-1

d)

Figure 4.3: Magnitude of the 0-body contributions of the kth term in Eq. 4.8 evaluated in
the NO2B approximation. The top row is for the electron gas at Wigner-Seitz radii of (a)
rs = 0.5 and (b) rs = 5.0. The bottom row is for 16O, starting from the chiral NN potential
of Entem and Machleidt [17], softened by a free-space SRG evolution to (c) λ = 2.0 fm−1

and (d) λ = 3.0 fm−1. The electron gas calculations were done for N = 14 electrons in a
periodic box with M = 114 single particle orbitals. The 16O calculations were done in an
emax = 8 model space, with ~ω = 24 MeV for the underlying harmonic oscillator basis.

while the other curves denote IM-SRG(2) and MAGNUS(2) calculations using a first-order

Euler method with different step sizes δs. For the electron gas, the exact FCIQMC results [3]

are shown for reference. Unsurprisingly, the IM-SRG(2) Euler calculations are very poor,

with the various step sizes converging to different large-s limits. The MAGNUS(2) calcu-

lations, on the other hand, converge to the same large-s limit in excellent agreement with

the standard IM-SRG(2) results. The insensitivity to step size is due to the fact that the

time step errors accumulate in Ω(s) as opposed to H(s). At the end of the flow, Ω(s) is still
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Figure 4.4: Flowing IM-SRG(2) and MAGNUS(2) HEG correlation energy, E0(s) − EHF,
for Wigner-Seitz radii of a) rs = 5.0 and b) rs = 0.5. The solid black line corresponds to
IM-SRG(2) results using an adaptive solver based on the Adams-Bashforth method, while
the other lines correspond to MAGNUS(2) and IM-SRG(2) results using different Euler step
sizes. The red circles denote the quasi-exact FCIQMC results of Ref. [3].

an anti-hermitian operator, and the transformation in Eq. 4.8 is unitary, up to truncation

errors in the NO2B approximation.

Given that the MAGNUS(2) results are independent of step size over the range consid-

ered, one might try to keep increasing the step size to reach the ground state in fewer steps.

This unfortunately is not possible, as the flow tends to diverge with too large of a time
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Figure 4.5: Flowing IM-SRG(2) and MAGNUS(2) ground state energy, E0(s), for 16O
starting from the N3LO NN interaction of Entem and Machleidt [17] evolved by the free-
space SRG to a) λ = 2.7 fm−1 and λ = 2.0 fm−1. The solid black line corresponds to
IM-SRG(2) results using an adaptive solver based on the Adams-Bashforth method, while
the other lines correspond to MAGNUS(2) and IM-SRG(2) results using different Euler step
sizes. The calculations were done in an emax = 8 model space, with ~ω = 24 MeV for the
underlying harmonic oscillator basis.

step. One of the strengths of the SRG approach is that the transformation is adapted as

the Hamiltonian is transformed. With too large of a time step, we rob the method of this

flexibility and run the risk of applying a “large rotation” of the Hamiltonian that induces

large three- and higher-body components. This would not be a problem if we evaluated the
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BCH and Magnus derivative expressions without approximation; the method would find its

way back since the large rotation is still unitary if no truncations are made. However, in

the MAGNUS(2) approximation we make, the neglect of the induced three- and higher-body

terms can lead to a lack of convergence. Empirically, we find that this difficulty is avoided

by enforcing that at each time step the “off-diagonal” matrix norm ‖Hod‖ is decreasing.

This can be implemented by using a simple mid-point integrator algorithm and decreasing

the time step if ‖Hod‖ has increased between the first and second half of a step.

As a final demonstration of the utility of the Magnus expansion, we turn to the evolution

of operators other than the Hamiltonian. In the conventional approach based on the direct

integration of Eq. 3.2, the dimensionality of the flow equations increases with each additional

operator to be evolved. In contrast, in the Magnus expansion the dimensionality of the flow

equations does not change; the additional computational expense shows up only in the

evaluation of the BCH formula for the transformed operator, Eq. 4.9. For a given operator

O, we have

〈Ψ0|O|Ψ0〉 = lim
s→∞

〈Φ|eΩ(s)Oe−Ω(s)|Φ〉 , (4.24)

where |Φ〉 is the reference state. Therefore, the 0-body piece of the transformed operator

approaches the interacting ground state expectation value in the large-s limit.

As a proof-of-principle, we perform a MAGNUS(2) evolution to evaluate the ground state

expectation value of the momentum distribution operator n̂k ≡ a
†
kak for the HEG, and the

generalized center of mass (COM) Hamiltonian for the 16O nucleus,

Hcm(ω̃) = Tcm +
1

2
mAω̃2R2

cm −
3

2
~ω̃ . (4.25)

Figure 4.6 shows the MAGNUS(2) ground state momentum distribution for a system of N =
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Figure 4.6: Electron gas momentum distributions calculated in the MAGNUS(2) approxi-
mation. The calculations were done for N = 14 electrons in a periodic box with M = 778
single particle orbitals.

14 electrons in a periodic box for several different Wigner-Seitz radii. Even with the neglect

of finite size corrections and the extremely coarse momentum grid due to the small box sizes

considered, the qualitative behavior agrees with expectations for the electron gas; correlations

become more important at larger rs, leading to a stronger depletion of modes with k < kF

and smaller discontinuity at the Fermi surface. We note that the MAGNUS(2) results are

in good agreement with the IM-SRG(2) calculations based on Eq. 3.2 as well as results

generated by the Feynman-Hellman theorem, but at a fraction of the cost. In addition to

providing a memory-efficient means for evolving operators beyond the Hamiltonian, Fig. 4.7

shows that the MAGNUS(2) approximation gives a small but robust computational speedup

for a range of basis sets, even including the additional effort of generating the momentum

distributions, which were not computed in the IM-SRG(2) timings.

For our second illustration of operator evolution, we consider the generalized COM Hamil-

tonian, Eq. 4.25. In calculations of nuclei, the ground state expectation value of this quan-
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tity is useful to diagnose whether approximate solutions of the Schrödinger equation are

contaminated by spurious COM motion. Since nuclei are self-bound objects governed by a

translationally-invariant Hamiltonian, an exact solution of the Schrödinger equation must

factorize into the product of a wave function for the physically relevant intrinsic motion

times a wave function for the COM coordinate,

|Ψ〉 = |ψ〉in ⊗ |ψ〉cm . (4.26)

As is well known, there are two strategies to rigorously guarantee this factorization; one

can work in a translationally-invariant basis from the outset, or one can work in a so-called

full N~ω model space comprised of all A-particle harmonic oscillator Slater determinants

with excitations up to and including N~ω. Neither choice is optimal since the former is

limited to light nuclei due to the factorial scaling of the required antisymmetrization, while
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the N3LO NN interaction of Entem and Machleidt [17] evolved by the free-space SRG to
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space.

the latter limits the choice of the single particle orbitals to the harmonic oscillator basis and

does not carry over to methods that are capable of reaching heavier nuclei, such as coupled

cluster theory and the IM-SRG where it is more natural to define the model space via an

energy cutoff (e.g., 2n + 1 ≤ emax) on the single particle states. In the case of calculations

with an emax cutoff, there is no analytical guarantee that the COM and intrinsic wave

functions factorize.

In Ref. [18], Hagen and collaborators gave an ingenious prescription to diagnose whether

or not Eq. 4.26 is satisfied in such calculations. The basic idea is to assume that the factorized

COM wave function is in the ground state of Hcm(ω̃) with lowest eigenvalue. Note that ω̃ 6= ω
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in general, where ω is the frequency of the underlying oscillator basis. The prescription to

find ω̃ involves solving a quadratic equation

~ω̃ = ~ω +
2

3
Ecm(ω)±

√
4

9
(Ecm(ω))2 +

4

3
~ωEcm(ω), (4.27)

where

Ecm(ω) ≡ 〈Ψ|Hcm(ω)|Ψ〉 (4.28)

= lim
s→∞

〈Φ|eΩ(s)Hcm(ω)e−Ω(s)|Φ〉 (4.29)

= lim
s→∞

{
eΩ(s)Hcm(ω)e−Ω(s)}

0b . (4.30)

Since there are two roots of Eq. 4.27, we choose the one that gives a smaller value for

Ecm(ω̃). Applying this prescription to our calculations of 16O, we obtain the results shown

in Fig. 4.8. In the top panel, we see that the expectation value of the COM Hamiltonian

Hcm(ω) is approximately zero for ω ≈ 20 MeV, but varies parabolically and becomes rather

large away from this point. This suggests that if Eq. 4.26 is satisfied, the frequency of

the factorized COM Gaussian should have ω̃ ≈ 20 MeV. This is born out in the bottom

panel, where the two roots of Eq. 4.27 are plotted as a function of ~ω. Picking the root

that minimizes Ecm(ω̃), we find that indeed ω̃ ≈ 20 MeV over a wide range of ω, and that

Ecm(ω̃) ≈ 0. Since the excitation energy for the first spurious COM mode is ~ω̃ ≈ 20 MeV,

while Ecm(ω̃) ranges between 0.03-0.14 MeV over the entire range of ~ω, we conclude that

the factorization of COM/intrinsic motion is satisfied to an excellent approximation.
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4.7 MAGNUS(2) Conclusion

In these simple systems, we have shown that all the utility of IM-SRG(2) calculations in

Chapter 3 is available now at significantly decreased cost, with the option of investigating

any observable without conducting the full IM-SRG(2) calculation again. We have thus

circumvented two of the largest weaknesses of the method, the already mentioned need to

solve a large set of differential equations with small errors, and the linear scaling in desired

observables. We would now like to address the undercounting of a certain class of diagrams

mentioned in 3.5. Within the MAGNUS(2) formulation, we have a fairly straightforward

way to proceed with this, which will be presented in Chapter 5.
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Chapter 5

Approximating the IM-SRG(3)

Having established that the exact solution of the vast majority of many-body problems is

beyond the reach of even the most advanced methods in chapter 2, practitioners instead set

their aim on finding systematic approximations that, in some limit, approach the complete

solution. This philosophy is evident in coupled cluster theory, where one can truncate the

cluster operator T at increasing excitation rank, giving a hierarchy of improved approxima-

tions (CCD, CCSD, CCSDT, etc.). Moreover, since truncations beyond the CCSD level can

become extremely expensive for larger systems, much effort has gone into the development of

computationally cheap non-iterative approximations to these higher truncations. The central

aim of the present chapter is to describe how analogous approximations can be constructed

in the IM-SRG.

In Chapter 4, we argued that the direct integration of the IM-SRG(2) flow equations in

Eq. (3.2) is limited by the large memory demands of the high-order ODE solvers that are

needed to control the accumulation of numerical errors. One of the major themes of my thesis

is the use of the Magnus expansion to eliminate these difficulties by reformulating the problem

so that the set of flow equations to be solved is given by Eq. (4.6). As discussed in Chapter

4, this reformulation, which in the NO2B approximation is deemed MAGNUS(2), can be

solved with a simple first-order Euler method and yields a nearly identical transformation as

the IM-SRG(2), but with much smaller memory requirements. As a result, the MAGNUS(2)

makes it feasible to extend calculations to heavier systems and, more importantly, perform
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calculations of other properties besides spectra.

In addition to providing substantial computational improvements, the Magnus formula-

tion provides a particularly transparent path towards developing approximate MAGNUS(3)

calculations from converged MAGNUS(2) calculations. The development of such approxi-

mate NO3B calculations is essential, as the full IM-SRG(3)/MAGNUS(3) methods naively

scale as n9, which makes them intractable for large-scale calculations. In the present chapter,

we will first delve into quantum chemistry type systems to demonstrate the shortcomings of

IM-SRG(2) type calculations even with respect to CCSD, despite the fact that they should

be naively related to each other. From there, guided by the perturbative analysis of Section

3.5, we will introduce computationally feasible approximations to mitigate these shortcom-

ings. And then finally, we will introduce a family of methods that are analagous to CCSD

plus non-iterative approximate triples.

5.1 Deficiencies of the IM-SRG(2) in Chemistry

The first application of the IM-SRG(2) to ab-initio many-body calculations, though couched

in somewhat different terminology and notation, was carried out by White in treating an

H2O molecule in a DZP basis set [78]. While the method was more or less abandoned in

chemistry systems, though see the related work of Evangelista and collaborators [134] and

Chan et al. [79]. An important finding in that first seminal work was that, unlike CCSD

which generally underbinds with respect to FCI, IM-SRG(2) produced results that were

dramatically overbound at equilibrium and not convergent at even modest bond lengths.

This was peculiar, as the scaling and philosophy of the methods are similar.

Pinpointing the failure of the IM-SRG(2) and MAGNUS(2) to produce converged results
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in H2O and other stretched molecules can be guided most easily by the perturbative analysis

found in Sec. 3.5. As we have already pointed out, diagrams making up those (3.120) are

undercounted by a factor of two in both IM-SRG(2) and MAGNUS(2). These are properly

accounted for in CCSD calculations, so initial attempts to resolve non-convergence centered

around restoring this content to the transformed Hamiltonian. Evangelista et al. had similar

findings when the BCH of traditional coupled cluster is applied via one- and two-body

intermediates, as opposed to the full diagrammatic content of the cluster amplitudes found

in (2.31)-(2.33) [121]. The lack of these diagrams caused dramatic overbinding with respect

to full CCSD in H2O and similar molecular systems. As discussed in the following and in

3.5, this is also the reason IM-SRG(2)/MAGNUS(2) results track in between CCSD and

CCSD(T) calculations for a wide range of closed-shell nuclei, 2D quantum dots, and the

homogenous electron gas.

5.2 The IM-SRG(2*) Approximation

In the traditional IM-SRG formalism, it is not straightforward how one might restore the

above undercounted terms without storing a full three-body operator, which is a six-index

tensor. This is certainly something we wish to avoid, as calculations are often memory

limited even with the 15-20 copies of a two-body Hamiltonian. Since these diagrams are

found in the IM-SRG(2), but with the wrong weight, maybe it is possible to find a way to

re-weight the effect of what is already included without changing the computational cost

too much. Indeed, this can be done. Figure 5.1 and Figure 5.2 both show similar third-

order contributions to the transformed Hamiltonian, both of which lead to identical fourth

order energy contributions. The first is found in IM-SRG(2) calculations, while the second
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enters via an intermediate three-body force that one would naively need the IM-SRG(3)

to include. A similar attempt at mocking up twice the total effect of diagrams found in

Figure 5.1 was made recently by Evangelista in Ref. [134], simply by doubling the pre-

factor of the derivative to flowing one-body Hamiltonian in Eq. (3.2). While this brought

results into good agreement with CCSD at equilibrium, and stabilized convergence for some

bond-lengths, it obviously distorts the single-particle spectra. This ad-hoc distortion has

some undesirable consequences, particularly if the resulting transformed Hamiltonian is to

be used for subsequent applications (e.g., the computation of excited states or a valence shell

model Hamiltonian). In the present work, we describe an alternative fix in which, rather

than doubling “by hand” the prefactor of the single-particle spectra flow equation, we store

the change to the single particle Hamiltonian separately from the transformed Hamiltonian

itself. This can be easily accomplished by introducing an auxiliary one-body operator χ with

the following flow equation,

dχqr
ds

=
1

2

∑
stu

(nqnr + n̄qn̄r)(nsntn̄u + n̄sn̄tnu)(1 + Pqr)ηuqstΓstur (5.1)

subject to the boundary conditions

χqr(0) = 0. (5.2)

It is then possible to amend the flow equations in the following way

dH(s)

ds
= [η(s), H(s) + χ(s)]. (5.3)
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This allows for a direct solution of (3.2) that correctly accounts for all (non-triples) fourth

order energy content. We note now, that although the inclusion of χ corrects the asymmetric

fourth order quadruples diagrams correctly, it is not technically incorrect in the way it cor-

rects the flowing two-body vertex. This can be seen by comparing the resulting contributions

to the third-order vertex in Fig. 5.1 and Fig. 5.2, since one has triple contractions between

first order generators, and one does not. We will revisit whether this is an advantage or

not in Sec. 5.3. Despite this slight discrepancy, this inclusion stabilizes the flow away from

equilibrium geometries compared to the naive re-weighting correction in [134]. Since this is

not a true three-body IM-SRG, and still scales in the same way as IM-SRG(2), we refer to it

as IM-SRG(2*). Unfortunately, we have not yet discerned a way to keep track of the induced

three-body force required to account for a triples type calculation in the direct solution of

(3.2). Fortunately though, the main thrust of my thesis work has been the development

of the Magnus formulation of the IM-SRG, which offers a more transparent path towards

approximating the neglected induced three-body interactions. For this reason, we will not

actually present any IM-SRG(2*) results in this work.

5.3 The MAGNUS(2*) Approximation

The MAGNUS(2) method has the same undercounting of the fourth-order quadruple-excitation

diagrams mentioned above, and therefore exhibits the same overbinding and lack of stability

for stretched bonds. We now present the analogous MAGNUS(2*) method that corrects for

these undercounted terms. As we will see, it is more natural in the Magnus formulation to

approximately correct for terms that are missing or undercounted in the MAGNUS(2) level

of truncation.
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Figure 5.1: The dark circle and square represent the bare Hamiltonian and generator respec-
tively. The light circles in the first column represent the second order 1-body Hamiltonian
originating from [η,H]1B . If the second order 1-body vertex is expanded in terms of bare
quantities, the 4 asymmetric Goldstone diagrams on the right are the result.

We start by recalling that the Magnus formulation centers around the application of an

exponent Ω via the Baker-Cambell-Hausdorff expansion in Eq. (4.8). In the MAGNUS(2)

approximation, every internal commutator is truncated at the NO2B level. In the diagrams

of Figs. 5.1 and 5.2, we can replace the generator η with Ω, which shows that the dia-

grams from internal one- and three- body terms arise from BCH terms [Ω, [Ω, H]1B ]2B and

[Ω, [Ω, H]3B ]2B respectively. We have attempted to restore the diagrams in Fig. 5.2 as they

are, but it appears that the effective one-body operator arising from the triple contraction

of Ω with itself, which appears in the second column of expanded diagrams, generally causes

problems at stretched geometries of molecules. In contrast, for nuclear systems we include

them as they are, and see no problems with convergence, which was never a problem for

these systems even in the IM-SRG(2)/MAGNUS(2) calculations.

In keeping with the same philosophy as the IM-SRG(2*) method, we modify the ex-
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Figure 5.2: The dark circle and square represent the bare Hamiltonian and generator respec-
tively. The light circles in the first column represent the second order 3-body Hamiltonian
originating from [η,H]3B . If the second order induced 3-body vertex is expanded in terms
of bare quantities, the 4 asymmetric Goldstone diagrams on the right are the result.

pression for each adjoint operator in the BCH formula with a one-body operator χ̃k in the

following way,

H(s) = eΩH e−Ω =
∞∑
k=0

1

k!
ãd
k
Ω(H) (5.4)

ãd
k
Ω(H) = adkΩ(H) for k=0,1, (5.5)

ãd
k
Ω(H) = [Ω, ãd

k−1
Ω (H) + χ̃k−1] for k>1 , (5.6)

where the one-body operator χ̃k is defined as

χ̃kqr = 1
2

∑
stu(nqnr + n̄qn̄r)(nsntn̄u + n̄sn̄tnu)(1 + Pqr)ΩuqstX

k−1
stur (5.7)

(5.8)
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and Xk = ãd
k
Ω(H)2B . Although this corrected BCH expression was motivated by pertur-

bative considerations, it appears that this general topology of terms, i.e, the diagrams of

Figs. 5.1 and 5.2, but with the full flowing vertices (which themselves are non-perturbative

resummations), are very important. To clarify, every piece of this diagram involves “off-

diagonal” components of the Hamiltonian, and feeds directly back into the flow of the same

“off-diagonal” vertices. This seems to promote its importance beyond a naive perturbative

counting of terms. For instance, the third such modified nested commutator, which con-

tributes to energy at fifth order, changes answers by .1-.5 mH for the molecules we present

results for. Therefore, we keep all such nested commutators in our calculations. This might

raise concerns that other neglected topologies arising from [Ω, [Ω, H]3B ]1B,2B are not neg-

ligible. To check this, I have implemented all terms arising from expressions of internal

three-body commutators that immediately are triply contracted with the two-body Ω, as

they can all be factorized into an N6 evaluations. However, these terms typically affect the

final answer (at equilibrium) by a negligible amount of around .1 mH or less. We are not

claiming that higher-body terms in further nested commutators are also negligible, but gen-

erating them will cause the method to scale the same as the full IM-SRG(3), and therefore

they are not considered in this work. This question will be explored more in future work, at

least for sufficiently small systems so that the full calculations can be carried out, to verify

that they are not sizeable.

This modified truncation of the BCH commutators provides a robust convergence pattern,

which agrees with CCSD results at equilibrium geometries for every molecule and basis set

we have investigated in this work. As bonds are stretched, the results from MAGNUS(2*)

begin to underbind with respect to CCSD results. However, this underbinding may prove

to be a good thing, given that three-body effects (which should be attractive) have not yet
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been fully accounted for in the above method. We should also mention that here, there

is nothing that is more or less valid when applying this corrected BCH expression for any

observable we are dealing with. In other words, it should be generally applicable for any

operator dominated by its NO2B and lower components.

In spirit, this approximation captures much more than the three-body Mukherjee decom-

position found in canonical transformation theory [79]. The difference is that there, they are

decoupling an “active space”, and that their tensor decomposition introduces a state speci-

ficity to the transformation. It would be interesting to go back and use our approximation

presented in a complete active space calculation to see how it compares. For now, that is

beyond the scope of this work.

5.4 Approximations to MAGNUS(3)

In Chapter 2 we reviewed the main non-iterative CCSD plus some non-iterative approximate

inclusion of three-body cluster amplitudes. We present here the various ways that similar

approximations can be included our framework. Having just summarized how the effect

of certain three-body operators that are internal to the BCH can be included, we now

turn to approximate the leading effects of including all NO3B effects as well, termed the

MAGNUS(3). Like CC methods presented earlier, we are only interested in non-iterative

methods that are just slightly more costly than the MAGNUS(2*) calculation they are based

upon.

All of our methods are reminiscent of CC theory, but given that they are framed in

terms of a transformed Hamiltonian that is Hermitian, they are more intuitive. For the

remainder of this section, any non-subscripted Ω is the converged operator of a MAGNUS(2*)
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decoupling. We denote H̄ = H(∞) = eΩH(0)e−Ω in order to simplify equations. If we want

to incorporate physics beyond the NO2B Hamiltonian, then we need to allow for a three-body

interaction W̄ in the following way,

H̄ ≈ {Ē + f̄ + Γ̄}MAGNUS(2∗) + W̄ . (5.9)

The contents of the brackets contain the final Hamiltonian we generate in our fully converged

MAGNUS(2*) transformation, and as such, it is completely “diagonal.” The W̄ part of

the interaction, on the other hand, can connect our reference Φ to triply excited Slater

determinants. For now, we will leave the form of W̄ unspecified. Given that it is possible to

generate it, the most straightforward way to immediately give an energy correction due to

W̄ is just second order perturbation theory. We have already given the form of this in Eq.

(2.26), but for the reader’s ease we reproduce it here. The energy correction ∆E[3] can be

written as

∆E[3] =
1

3!2

∑
ijkabc

W̄ijkabcW̄abcijk

∆̄ijkabc
=

1

3!2

∑
ijkabc

Ω̄ijkabcΩ̄abcijk∆̄abcijk . (5.10)

Although this energy correction was motivated by perturbation theory with the transformed

Hamiltonian, there is an alternate derivation in which it arises in another way. We also take

a moment to note that the denominator ∆̄ijkabc can be made from the bare or transformed

Hamiltonian, and can be chosen freely to be Möller-Plesset or Epstein-Nesbett type. If we

introduce a second transformation eΩ̄, with elements of the following form,

Ω̄abcijk =
W̄abcijk

∆̄abcijk
, (5.11)
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then we can transform the final MAGNUS(2*) Hamiltonian as

¯̄H = eΩ̄H̄e−Ω̄ . (5.12)

If we assume that this second transformation’s BCH expansion follows the same pattern of

monotonically decreasing terms as shown in Fig.4.3, then the brunt of the energy correction

will come from the first few terms. Isolating the first few terms, we arrive at

∆E[3] = [Ω̄, H̄]0B +
1

2
[Ω̄, [Ω̄, H̄]]0B . (5.13)

Here we will have to restrict the Hamiltonian H̄ appearing in the second commutator to

only have the diagonal form used to define ∆̄, else the numerical scaling to establish ∆E[3]

will rise from its cheapest n3
on

4
u to at least n3

on
6
u or higher depending on how much of H̄ is

included in this commutator. But keeping the prescription as presented, the two formulas

yield identical results as designed. The reason for demonstrating the same energy correction

arises from BCH formalism, is that it allows for the straightforward inclusion of observables

at the same level of accuracy, and in future work with other applications of the MAGNUS(2)

to valence space and multireference methods, we will will not need to appeal to a more

complicated perturbation theory to proceed.

We now turn to how we approximate W̄ , and it is here that we begin to really draw

analogies with the CC methods presented earlier. If we recall how the triples energy cor-

rection to CCSD[T] was established, T3 was approximated as linear in the converged T2

amplitudes, with the bare resolvent. We can form a similar approximation, W̄ = [Ω, H]3B ,

and also using only the bare HF energies in the denominator to establish Ω̄. In order to do
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this we need only elements of the form W̄abcijk = [Ω, H]abcijk.

[Ω, H]abcijk = (1− Pab − Pbc)(1− Pij − Pik)
(∑

l

ΩabilΓlcjk −
∑
d

ΓabidΩdcjk − (Ω↔ Γ)
)
.

(5.14)

Not surprisingly, this is the term that dictates the n3
on

4
u scaling already mentioned, and is

exactly the same expression that appears in coupled cluster theory in Eq. (2.37) and Fig.

2.3. Once established, ∆E[3] corrects the EMAGNUS(2∗) energy to fourth order in MBPT

with regards to the original reference. It is important to notice that this energy only goes

beyond fourth order via the use of an infinite order two-body Ω. This will be the crudest

approximation we can make in this formalism, and we denote it MAGNUS(2*)[3]-A, with

energy correction ∆E[3]−A.

For next level of approximation, instead of using the original bare Hamiltonian for usage

in our denominators, we can use the fully transformed one-body Hamiltonian resulting from

a MAGNUS(2*) calculation. Thus the resolvent is updated by the fact that our single

Slater determinant is a much better approximation after the MAGNUS(2*) transformation.

This type of correction will be denoted by MAGNUS(2*)[3]-B to make the connection to

renormalized coupled cluster theory.

We can go one step further by not limiting ourselves to induced three-body interactions

that are only linear in Ω. This is accomplished by using an “internal BCH” to establish the

two-body piece that is contracted with Ω to form W̄C . This is motivated by returning to

the matrix adjoint expression of H̄ from Eq. 5.4, which only begins at k = 1 for an induced

three-body force

W̄ =
∑∞
k=1

1
k! ãd

k
Ω(H)3B = [Ω, H]3B + 1

2 [Ω, [Ω, H]]3B + . . . . (5.15)
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If we want to approximate this as fully as possible without increasing the single n3
on

4
u itera-

tion, it is easy to form a fully renormalized internal vertex by rewriting

W̄ = [Ω, H +
1

2
[Ω, H] + . . .]3B = [Ω,

∑
k=1

1

(k + 1)!
ãd
k
Ω(H)2B ]3B = [Ω, H̃]3B . (5.16)

This makes it possible to use Eq. 5.14, just by replacing H with H̃. We suggest that this re-

placement makes connects philosophically with the completely renormalized coupled cluster

CR-CC(2,3), as everything that goes into the triples matrix elements is consistently trans-

formed. We call the method arising from these choices MAGNUS(2*)[3]-C. All topologies

of terms found in the three-body M of CR-CC(2,3) can also be found in W̄C , although ad-

mittedly some of them will be under counted. This can be seen as identical terms can arise

identically from [Ω, [Ω, H]3B ]3B , which will be omitted in our truncation scheme. These

should be further investigated to see how large they are. It has been found that using

Epstein-Nesbett type denominators in the analogous denominators of CR-CC(2,3) lead to

results that track much more closely to full CCSD[T] [8]. We will also explore another

scheme, where the denominator from MAGNUS(2*)[3]-C is made to include diagonal ele-

ments from the fully transformed two-body Hamiltonian resulting from a MAGNUS(2*). We

will denote this as MAGNUS(2*)[3]-D.

5.5 Applications

Despite the fact that these corrections have been motivated by the failure of the IM-SRG(2)

methods in chemistry systems, it is fitting that we start elsewhere, as the story of the

success of these methods in chemistry systems is still nuanced. We will first investigate
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Method W̄ ∆̄ijkabc

MAGNUS(2*)[3]-A [Ω, H]3B 〈Φabcijk |f |Φ
abc
ijk〉

MAGNUS(2*)[3]-B [Ω, H]3B 〈Φabcijk |f̄ |Φ
abc
ijk〉

MAGNUS(2*)[3]-C [Ω, H̃]3B 〈Φabcijk |f̄ |Φ
abc
ijk〉

MAGNUS(2*)[3]-D [Ω, H̃]3B 〈Φabcijk |f̄ + Γ̄ |Φabcijk〉

Table 5.1: Approximations made in the various MAGNUS(2*)[3] variants.

the ability of the corrections presented above to dramatically improve calculations of the

electron gas. Then we will present some simple, but realistic nuclear calculations for 4He

and 16O, that show generally expected results. Finally we will show results for a handful

of chemistry results, with varying level of success. We will then use some of the failures in

chemistry systems to highlight another tool that the MAGNUS(2*) class of methods can

add to treating difficult systems where Hartree-Fock is not an adequate starting point.

5.5.1 Electron Gas Results

In Chapter 4, we examined the ability of the Magnus formulation to reproduce IM-SRG(2)

calculations for both the electron gas and finite nuclei. In figure 5.3, we benchmark results of

MAGNUS(2) to quasi-exact calculations at a variety of densities and basis set sizes. When

compared to CCD calculations, MAGNUS(2) (and IM-SRG(2)) results are always between

the exact FCIQMC and CCD calculations. A similar pattern is found in the vast majority

of nuclear calculations, where the naive IM-SRG(2) and MAGNUS(2) results fall between

CCSD and CCSD(T) calculations, see the discussion in Chapter 3. When we now apply the

MAGNUS(2*) to the electron gas, we find answers that are virtually indistinguishable from
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Figure 5.3: Ground state calculations for 14 electrons confined to a box at densities of rs/a0
of .5,1,2,and 5 and performed at 3 basis set sizes of 114,186, and 358 with various methods.
Although CCSD results are not plotted, correcting the MAGNUS(2) commutator expressions
as shown in Eq. (5.4) makes MAGNUS(2*) indistinguishable from CCSD on these scales.
Further, the triples correction due to the MAGNUS(2*)[3]-D binds the result back down to
agree very well with FCIQMC results from Ref. [3], while the bare denominators found in
variant A of MAGNUS(2*)[3] overbind dramatically.

CCD. This indicates that the apparent higher quality of the IM-SRG(2)/MAGNUS(2) results

(relative to the analogous CCD and CCSD results) is generally a result of cancellation of two

classes of errors, one repulsive omission that is fixed by including the MAGNUS(2*) terms

of Eq. (5.4), and one attractive ommision that is fixed with the inclusion of approximate

triples. We now turn to the different variants of MAGNUS(2*)[3], and as a visual guide to

what approximation is being made, we refer the reader to Table 5.1. Variants A and D of

the MAGNUS(2*)[3] correction are plotted in Fig. 5.3, the others are not shown for clarity.

The success of the MAGNUS(2*)[3] approximations is fairly astonishing, even given the sim-

plicity of this system. The most naive approximation ∆E[3]−A causes slight overbinding at a

rs/a0 = .5, to fairly dramatic over binding at rs/a0 = 5. This is not surprising as the system

is exceedingly non-perturbative at rs/a0 = 5. At this density even the plane wave HF energy
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Method rs/a0 = .5 rs/a0 = 1.0 rs/a0 = 2.0 rs/a0 = 5.0
Hartree-Focka 58.5927 13.6036 2.8786 .2099
FCIQMCa -.5169 -0.4611 -0.3842 -0.2645

CCDb 0.9906 0.9714 0.9313 0.8445

CCDTb 1.0007 1.0032 1.0152
MAGNUS(2) 0.9972 0.9912 0.9802 0.9617
MAGNUS(2*) 0.9905 0.9714 0.9311 0.8434
MAGNUS(2*)[3]-A 1.0011 1.0056 1.0263 1.1234
MAGNUS(2*)[3]-B 1.0010 1.0043 1.0162 1.0401
MAGNUS(2*)[3]-C 1.0006 1.0021 1.0081 1.0151
MAGNUS(2*)[3]-D 1.0005 1.0016 1.0061 1.0107

Table 5.2:
a FCIQMC results from Ref. [3].
b CCD and CCDT results from Ref. [4].
Ground state of 14 electrons calculated in a basis set of M=114 plane waves with various ap-
proximations. The Full Configuration Quantum Monte Carlo correlation energy is reported
in Hartree. All other energies are reported as a fraction of the correlation energy recovered
with respect to quasi-exact FCIQMC results.

is bound, so it is surprising that we achieve satisfactory results at that density. The fourth

order MBPT triple excitations for rs/a0 = 5 produce results that are over bound by a little

under a full Hartree. The triples energy gap approximately doubles when using transformed

instead of untransformed energy denominators, that is ∆̄ijkabc ≈ 2∆ijkabc. This benefit of

using transformed denominators can be seen in the drastic improvement from A to B in Table

5.2. The inclusion of the internally transformed H̃ makes another large improvment from B

to C. And finally C to D, where the transformed Möller-Plesset denominators are replaced

with Epstein-Nesbet type, creates a small, but measurable difference that makes ∆E[3]−D

shows very good agreement with FCIQMC results. A recent publication produced full triples

results for the smallest of these basis set sizes, and the comparison of all methods to the

FCIQMC are shown in Table 5.2[4]. Most interesting is that methods C and D outperform

even full CCDT results for this system. There is no reason to expect that this pattern would
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hold for all basis set sizes. Unfortunately, this clear and systematic improvement that is seen

in the periodic electron gas is much more complicated to see in more realistic systems like

nuclei and molecules.

5.5.2 Nuclear Results

For nuclear systems, where the IM-SRG(2) method has found great success in treating

medium mass nuclei, there have been fewer problems with convergence, but the open question

of why IM-SRG(2) methods, which scale as CCSD, generally tracks Λ-CCSD(T) type results.

For the results we are about present,we use a NN-only chiral N3LO chiral interaction by

Entem and Machleidt [1, 2] softened to λ = 2.0 fm−1. Figure 5.4 shows the same conclusion

that was drawn from the electron gas, that is, it appears that when corrected MAGNUS(2*)

results agree very closely with CCSD. For 4He, MAGNUS(2*) comes from being overbound

with respect to Λ-CCSD(T) results to being in very close agreement with CCSD. When the

∆E[3]−C correction is added to is, it is in very close agreement with the Λ-CCSD(T) results.

This can be seen again similarly in 16O calculations, shown in Fig. 5.5. This has been coded

up by Nathan Parzuchowski in his large scale spherical nuclear code, and he has performed

the spherical coupling of the W̄ operators so that it can be scaled up to treat heavier nuclei.

The details of this process, which is exactly the same as recent Λ-CCSD calculations can be

found in the appendix of [64]. It will be fruitful to explore these new approximations, and

investigate how they behave and can be extended in the presence of a full residual three-

body force, in the same spirit as recent works which analyze Λ-CCSD methods with chiral

three-nucleon potentials.
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Figure 5.4: MAGNUS(2*) results, with final MAGNUS(2*)[3]-C for the largest basis set
for 4He with the chiral N3LO chiral interaction by Entem and Machleidt [1, 2] softened to
λ = 2.0 fm−1. We notice that correcting the commutator as shown in Eq. (5.4) provides
repulsion that brings MAGNUS(2*) up to CCSD. Further, the triples correction due to the
MAGNUS(2*)[3]-C binds the result back down to agree with ΛCCSD[T]. CC results from
Ref. [18]
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for 16O with the chiral N3LO chiral interaction by Entem and Machleidt [1, 2] softened to
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5.5.3 H2O Results

We finally turn to chemistry systems, where the efficiency of the approximations is more

difficult to gauge. We have spent much of this work explaining first in 3.5.7 of Chapter 3

how IM-SRG(2) is missing diagrams that CCSD keeps, and then discussing how this led

to the catastrophic failure of the IM-SRG(2) in chemistry systems. In Table 5.3, we plot

the results of several CC vs our calculated magnus results for H2O in a cc-pVDZ basis

set[135], at equilibrium bond (Re = 1.84345 bohr) and HOH angle fixed at 110.6 for several

symmetrical stretchings of the molecule. Although this is not an easy system to treat since

it involves double bond breaking, we present it first to address the issue of convergence. The

first and most important finding is that in this typical double bond breaking test system,

where White’s seminal work on the IM-SRG(2) failed, the MAGNUS(2*) calculations are

robustly convergent[78] except at an O-H bond length of 3Re, which we will show in 6.1

is an artifact of MAGNUS(2*) sensitivity to reference states. We see that as the O-H

bond is stretched, MAGNUS(2*) is generally underbound with respect to CCSD. This may

actually be beneficial, as it offsets the large triples correction that will be added to it, to

give reasonable results. We see that MAGNUS(2*)-A,B,C give results that are underbound

with respect to FCI by a few mH, while the D variant remains quite close even in the face of

failing CCSDT results. This is a very interesting finding, as we will see in treating Hydrogen

Flouride, that the MAGNUS(2*)[3] methods fail while CCSDT remains within chemical

accuracy.
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Method Re 1.50Re 2Re 2.5Re 3.0Re
Full CIa -76.241 860 -76.072 348 -75.951 665 -75.917 991 -75.911 946

CCSDb 3.744 10.043 22.032 20.307 10.849
CCSDTa 0.493 1.423 -1.405 -24.752 -40.126

CCSD(T)b 0.658 1.631 -3.820 -42.564 -90.512
CCSD(2)T

c 0.906 2.825 3.805 -15.830 -33.035

CR-CC(2,3)d 0.344 1.142 -0.551 -23.100 -40.556
MAGNUS(2) -0.897 N.C. N.C. N.C. N.C.
MAGNUS(2*) 3.797 10.384 25.162 36.554 N.C.
MAGNUS(2*)-A 0.688 2.195 4.131 -1.646
MAGNUS(2*)-B 0.794 2.735 6.725 4.865
MAGNUS(2*)-C 0.982 3.342 8.952 8.825
MAGNUS(2*)-D 0.299 0.994 1.531 -4.497

Table 5.3:
aFrom Ref. [5].
bCCSD and CCSD(T) results obtained with PSI4[6].
cFrom Ref.[7]
dFrom Ref. [8]
A comparison of various CC ground-state energies obtained for the cc-pVDZ H2O molecule at
the equilibrium OH bond length R e = 1.84345 bohr and several nonequilibrium geometries
obtained by stretching the OH bonds, while keeping the HOH angle fixed at 110.6. The
spherical components of the d orbitals were used. In post-RHF calculations, all electrons
were correlated. The full CI total energies are given in hartree. The remaining energies are
reported in millihartree relative to the corresponding full CI energies.

5.5.4 Neon Results

We now turn to a simplified atomic system of the closed shell system Ne in a cc-pVDZ

basis set[135]. This is just to show that the extremely accurate reproduction of FCI found

in the homogenous electron gas of Table 5.2 was not accidental given that there are not

pressing issues of reference state dependence in this system, or extremely difficult to capture

static correlation. We observe that again, MAGNUS(2*) reproduces CCSD quite well, with

the approximate MAGNUS(3) methods performing as well or better than full CCSDT with

respect to full CI. It should be observed, that in the publication that the CC results were

taken from, the unitary variants of CC had similar performance in the cc-pVDZ basis set,
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Method Full CIa CCSDa CCSDTa CCSD(T)a

Energy -128.679 025 0.9935 0.9992 0.9990

Method MAG(2*) MAG(2*)[3]-A MAG(2*)[3]-B MAG(2*)[3]-C MAG(2*)[3]-D
Energy 0.9936 0.9996 0.9994 0.9989 1.0004

Table 5.4:
aFrom Ref. [9].
A comparison of CC and Magnus IM-SRG ground-state energies obtained for a Neon atom
in a cc-pVDZ basis set. In these post-HF calculations, the 1s orbital was frozen. The full
CI total energy is given in Hartree. The remaining energies are reported as a fraction of the
correlation energy recovered relative to ∆E = EHF -EFCI .

and then recovered slightly less energy than full CCSDT in the larger cc-pVTZ basis set[9].

5.5.5 C2 Results

I must highlight now that my implementation of the IM-SRG and MAGNUS equations

was implemented inside a plug-in for the chemistry suite PSI4 [6], but certainly not at

a production level. Given that the understanding of how point-group symmetries was not

understood when writing the plug-in, that symmetry has not been exploited. That makes

typical calculations for re,ωe, and other energy dependent quantities like that infeasible for

even modest basis sets. It is a goal of the writers to rewrite a production level plug-in for

PSI4. This introduction was needed to explain why only the energies are being compared

here for C2, a system we choose to treat because it has large multi-configurational content

even at equilibrium[9, 136]. In this system, we observe that again, MAGNUS(2*) reproduces

CCSD quite well, with the approximate MAGNUS(3) methods performing similarly to CC

methods.
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Method Full CIa CCSDa CCSDTa CCSD(T)a

Energy 75.729 853 29.957 3.371 2.042

Method MAG(2*) MAG(2*)[3]-A MAG(2*)[3]-B MAG(2*)[3]-C MAG(2*)[3]-D
Energy 31.234 3.671 6.634 9.420 -2.448

Table 5.5:
aFrom Ref. [9].
A comparison of CC and Magnus IM-SRG ground-state energies obtained for C2 at the
equilibrium FCI bond length of re = 1.27273 Åin a cc-pVDZ basis set, taken from Ref. [9].
In these post-HF calculations, the 1s orbitals was frozen on the C atoms. The full CI total
energy is given in Hartree. The remaining energies are reported correlation energy recovered
relative to ∆E = EHF -EFCI .

5.5.6 HF Results

In Table 5.6, we demonstrate the outcomes when HF in a DZP basis[137] is treated with

MAGNUS(2*) methods. We find generally much worse results than we found in any of

the previous systems. With regards to full CC methods, CCSDT provides chemical ac-

curacy across the whole potential energy surface, and CR-CC(2,3) approximates this very

well. CCSD(T) fails badly, The only place where satisfactory results compared to either

CCSD(T), CR-CC(2,3) is achieved is at equilibrium H-F bond length. Everywhere else, we

find dramatically overbound results, and non-systematic results even for the MAGNUS(2*)

base method, where it becomes very close to full CI results at 3Re and then unbound at

5Re. We suggest that this, like the failure to converge at large bond lengths for H2O, is a

results of reference state dependence and the fact that Hartree-Fock references become much

less accurate starting points during bond breaking.
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Method Re 2Re 3Re 5Re
Full CIa -100.160 300 -100.021 733 -99.985 281 -99.983 293

CCSDb 1.634 6.047 11.596 12.291
CCSDTa 1.0007 1.0032 1.0152 0.431

CCSD(T)b 0.325 0.038 -24.480 -53.183
CCSD(2)T

c 0.229 1.45 2.177 1.443
CR-CC(2,3)c -0.119 0.062 -0.096 -1.005
MAGNUS(2) -0.897 N.C. N.C N.C.
MAGNUS(2*) 1.581 4.495 0.988 14.249
MAGNUS(2*)[3]-A -0.115 -3.170 -29.319 -24.377
MAGNUS(2*)[3]-B -0.056 -2.167 -20.846 -10.924
MAGNUS(2*)[3]-C 0.121 -0.723 -12.437 -3.252
MAGNUS(2*)[3]-D -0.324 -4.080 -28.661 -31.390

Table 5.6:
aFrom Ref. [10].
bCCSD and CCSD(T) results from [6].
cFrom Ref. [8]
A comparison of CC and Magnus IMSRG ground-state energies obtained for the equilibrium
geometry of Re = 1.7328 bohr and other nuclear separations of HF with a DZ basis set. In
these post-HF calculations all electrons were correlated. The full CI total energies are given
in hartree. The remaining energies are reported in millihartree relative to the corresponding
full CI energy values.

5.6 Summary

We find that for the electron gas, nuclear systems, and the very simple chemistry systems,

that the MAGNUS(2*)[3] methods do a very good job of reproducing full CI results where

available, and perform as expected where they are not. This represents a huge step forward

for the ability of the IM-SRG to deal with these systems cheaply at higher accuracy, and to

get a handle on the expected contributions from higher order methods. For more complicated

chemistry systems like H2O and HF, there are other open questions. We have shown that

the truncated IM-SRG(2) method is in general sensitive to the quality of starting reference

states. It is believable that the failure of the method in these systems is due to this, in the

next section, we will explore this possibility.
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Chapter 6

Other Work

The majority of this thesis has been focused on establishing the Magnus formulation of the

IM-SRG equations as an effective way to move forward in treating the shortcomings of the

traditional solution both in the generation of observables, computational effort, and the abil-

ity to approximate the inclusion of three-body forces . We have shown that the exponential

formalism that underpins the new formulation offers the possibility of further advances. Here

we will present a few areas where work is current and promising, but full conclusions are not

yet ready to be drawn. The first of these will be informed again by coupled cluster methods

based on finding the best single reference by approximating Brueckner orbitals; this is some-

thing that is even more natural in the context of Magnus IM-SRG as we will demonstrate.

We will also take the opportunity here to present the possibility of generalizing our approx-

imate three-body inclusion methods in the context of excited state methods being pursued

by other practitioners of the IM-SRG method. Finally, we will present how the IM-SRG can

also be used to motivate multiconfiguration wavefunction methods in the spirit of CIPSI.

6.1 Improving the Reference

In Chapter 2 and 3, we showed how a reference plays a crucial role as the starting point of

the IM-SRG,CC, and MBPT type methods. For the IM-SRG, we have shown that results

are sensitive to the choice of reference. We have also shown why CC methods are generally
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not sensitive to starting reference. The quality of approximate triples, even in CC theory,

generally depends on the quality of the reference. Thus chemistry literature is full of attempts

to choose the best reference; one of the most interesting is by using a Slater determinant

composed of natural, or Brueckner Orbitals. This Brueckner reference |ΦBR〉 can be defined

as meeting one of two equivalent criteria. The first is that the overlap of the Brueckner

reference with the true ground state is maximized, that is, 〈Φ |Ψ0〉 is largest when |Φ〉 =

|ΦBR〉 [16]. A second commonly stated condition for this state is that the full CC ground

state built on a Brueckner reference has the following property,

|ΨCC〉 = eTA+...+T2+T1 |ΦBR〉 = eTA+...+T2 |ΦBR〉 , (6.1)

or that T1 vanishes in the fully converged solution [16]. To restate one more time, this

means the Hamiltonian needs no single particle change of basis and the ground state |Ψ0〉

contains no single particle excitations when expressed in Brueckner orbitals. This ideal set of

orbitals are fairly easy to grasp philosophically, but are often as expensive to pursue as a fully

correlated solution itself. Although there are several ways to accomplish this, it has been

pursued in depth within CC methods [16, 138, 139]. The one we will present here is the one

that will bring insight to our method, and the one that is implemented in the PSI4[6] software

suite under the name BCCD or Brueckner CCD. In it, full CCSD calculations are conducted,

and then the resulting T1 amplitudes are used to generate a new set of orthonormal orbitals.

These are then used to transform the Hamiltonian into this new basis. A CCSD calculation

is carried out again, and this procedure is iterated until the T1 amplitudes are vanishingly

small. In this way, they approximate the Brueckner reference within approximated CC

theory. One can see that this is a very expensive procedure, and generally these so called
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BCCD energies, and CCSD energies are very close for normal systems precisely because of

Thouless theorem (2.34). However, when the effects of T3 are approximately included instead

of exactly included, the starting reference becomes influential. There is also some evidence

that in the case of symmetry breaking, BCCD calculations can provide some large benefits

as well[139].

The same requirement is more tricky to observe in the Magnus formulation of the IM-

SRG, since as we have mentioned several times, e−Ω2B−Ω1B 6= e−Ω2Be−Ω1B , or any different

rank operators for that matter. It is however evident that even in the IM-SRG formalism,

|ΨIM−SRG〉 = e−ΩAB...−Ω2B−Ω1B |ΦBR〉 = e−ΩAB...−Ω2B |ΦBR〉 , (6.2)

since any Ω(1) will still create 1p1h excitation from |ΦBR〉 which by definition do not

belong. The Magnus formulation has shown that we do not need to solve a differential

equation perfectly in order to arrive at our desired decoupled Hamiltonian. It turns out that

the MAGNUS formalism still works if freed entirely from the differential equation. If we

force the transformation to instead take the form of

|ΨBMAGNUS(2∗)〉 = e−Ω1Be−Ω2B |Φ〉 , (6.3)

and we can still accomplish decoupling in our formalism, then |Φ〉 → |ΦBR〉, at least again

within our MAGNUS(2*) approximation, which should be similar to the BCCD. We also

dispense with the additional matrix adjoint terms in Eq. (4.6) besides just operator η itself,

since we are no longer trying to follow the differential equation. If we now look at how this
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is practically carried out,

H(s) = eΩ2eΩ1H e−Ω1eΩ2 =
∞∑
k=0

1

k!
adkΩ2

(eΩ1He−Ω1) (6.4)

eΩ1He−Ω1 =
∞∑
k=0

1

k!
adkΩ1

(H) . (6.5)

So we apply the transformation in two steps, first applying the one-body Ω1B , and then the

Ω2B to the resulting Hamiltonian. Because there is no error in applying a one-body Ω1B

within our method, this represents a perfect change of basis without approximation. This is

in contrast to applying both the one- and two-body pieces together, as Ω1B then appears in

three-body intermediates that are truncated. In this way we establish a new method, which

we name Brueckner IM-SRG, or for this work and its established truncation scheme, BMAG-

NUS(2*). Further, all the same approximate MAGNUS(2*)[3] methods can be carried over

with no necessary generalization, thus we will also present the BMAGNUS(2*)[3] methods

where their interpretations are obvious with the exception of where the bare Hartree-Fock

energies were used in variant A. For BMAGNUS(2*)-A, the diagonal energies from the one-

body diagonal Hamiltonian of eΩ1He−Ω1 are used to make the denominators.

6.2 Brueckner IM-SRG Results

For this section, we will present most of the chemistry systems treated from Chapter 5, but

now with the analagous BMAGNUS(2*)[3] methods. I will not be presenting anything for

the electron gas, as momentum conservation makes the plane waves the only basis set one can

work with without dramatically increasing the computational effort. I will also not present

any Brueckner results for nuclear systems. This is mostly a result of not having any nuclear
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BCCD results to draw comparisons with, but a future work centered on this BMAGNUS(2*)

methods in nuclear systems should be forthcoming very soon. Alongside the chemistry re-

sults, I will present the BCCD(T) results from PSI4. For these methods, it is also interesting

to output the BCCD and BMAGNUS(2*) reference energies in order to compare the charac-

ter of the orbitals produced from the two approximations, and affirm that BMAGNUS(2*) is

a similar approximation as BCCD. We will present these BMAGNUS(2∗)ref in most of the

systems. Given more time and understanding, it would also be beneficial for understanding

to actually produce the overlap of the two references, but coaxing PSI4 to output its BCCD

orbitals proved beyond our ability in the time available.

We begin again with the results from the very simple system of a cc-pVDZ neon system

at equilibrium. Even though this a very simple system, we can begin to characterize some

benefits of the Brueckner procedure.

6.2.1 BMAGNUS(2*) Results for Neon and C2

We begin to see a pattern here for what happens with both BMAGNUS(2*) type results.

Almost universally, the Brueckner results are underbound versus the Magnus results based

on Hartree-Fock references. We see this is particularly helpful in bringing the BMAG-

NUS(2*)[D] method, the most complete method, back to agreement with exact values.

This appears to be a general finding. Because of this we will choose to only present the

BMAGNUS(2*)-D method for these results. Unless otherwise mentioned, the other results

are further underbound with respect to presented results. Similarly, we see an overbound

result for MAGNUS(2*)[3]-D rise up to BMAGNUS(2*)[3]-D and become very, very close

to FCI results for C2 in Table 6.2. From these results, it is reasonable to believe that in

the absence of strong static correlation, BMAGNUS(2*)[3]-D collects a larger fraction of
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Method Full CIa CCSDa CCSDTa CCSD(T)a

Energy -128.679 025 0.9935 0.9992 0.9990

Method MAG(2*) MAG(2*)[3]-A MAG(2*)[3]-B MAG(2*)[3]-C MAG(2*)[3]-D
Energy 0.9936 0.9996 0.9994 0.9989 1.0004

Method BCCDref BCCD(T) BMAG(2*)ref BMAG(2*)[3]-D

Energy -0.0013 0.9991 -0.0010 0.9998

Table 6.1:
aFrom Ref. [9].
A comparison of CC and Magnus IMSRG ground-state energies obtained for a Neon atom.
In these post-HF calculations, the 1s orbital was frozen. The full CI total energy is given in
Hartree. The remaining energies are reported as a fraction of the correlation energy recovered
relative to FCI in mH.

Method Full CIa CCSDa CCSDTa CCSD(T)a

Energy 75.729 853 29.957 3.371 2.042

Method MAG(2*) MAG(2*)[3]-A MAG(2*)[3]-B MAG(2*)[3]-C MAG(2*)[3]-D
Energy 31.234 3.671 6.634 9.420 -2.448

Method SCF BCCDref BCCD(T) BMAG(2*)ref BMAG(2*)[3]-D

Energy 343.396 364.157 1.665 357.704 0.516

Table 6.2:
a From Ref. [9].
A comparison of CC and Magnus IMSRG ground-state energies obtained for C2 at the
equilibrium FCI bond length of re = 1.27273 Å. In these post-HF calculations, the 1s orbitals
was frozen on the C atoms. The full CI total energy is given in Hartree. The remaining
energies are reported in millihartree relative to the full CI energy.

correlation energy even compared to full CCSDT. It is imperative though to take time to

write a production level code in which symmetry is exploited in order to benchmark against

full IMSRG(3) results in reasonable basis sets.

6.2.2 BMAGNUS(2*) Results for HF and H2O

In the treatment of HF in the DZ basis, and H2O, we see that where BCCD results are

available, that the reference energy of BMAGNUS(2*)ref and BCCDref are very close to
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each other. Further, in bond breaking of HF, where MAGNUS(2*)[3]-D results become

dramatically overbound as at 3Re and above, the Brueckner BMAGNUS(2*)[3]-D is stable

and reasonably close to FCI answers. These results still are not nearly as well behaved as CR-

CC(2,3) for this system. But if we instead look at H2O, not only do we still get convergence

at 3Re, but we continue to get reasonable results even while CCSDT is extremely overbound

for double bond stretching.

6.2.3 Brueckner Summary

In conclusion, we see that BMAGNUS(2*)[3] results are reasonable, and almost always

outperform CCSD(T) results, but may not be competitive CR-CC(2,3) results for every

molecule. Rather generally, the Brueckner results appear to be producing a reference that

is similar in quality to BCCD references, which is most interesting as production of these

references has a computational cost very similar to a single MAGNUS(2*) calculation, while

these BCCD calculations required about 10-50 full CCSD iterations before the effects of T1

are small enough to be neglected. Even if old T1 and T2 are used as the starting point of each

iteration, this results in a BCCD calculation that is one the order of 10 times the effort of a

single CCSD calculation. Further, since we force Ω2B to keep the structure of Ω = T † − T

for BMAGNUS(2*) results, it can be set to scale exactly as CCSD, n2
on

4
u over the n6 of

MAGNUS(2*) with a general Ω.

6.3 Extensions to MR-IM-SRG

The IM-SRG formalism and applications presented so far use a single Slater determinant

as the reference state. In nuclear physics, these approaches are only appropriate for the
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Method Re 1.50Re 2Re 2.5Re 3.0Re
Full CIa -76.241 860 -76.072 348 -75.951 665 -75.917 991 -75.911 946

CCSDb 3.744 10.043 22.032 20.307 10.849
CCSDTa 0.493 1.423 -1.405 -24.752 -40.126

CCSD(T)b 0.658 1.631 -3.820 -42.564 -90.512
CCSD(2)T

c 0.906 2.825 3.805 -15.830 -33.035

CR-CC(2,3)d 0.344 1.142 -0.551 -23.100 -40.556
SCF 217.834 269.982 363.967 476.756 573.585
MAGNUS(2*) 3.797 10.384 25.162 36.554 N.C.
MAGNUS(2*)-D 0.299 0.994 1.531 -4.497 N.C.
BCCDref 218.758 276.328 383.342 515.316 ∗
BCCD 3.887 10.668 22.126 16.988 ∗
BCCD(T) 0.682 1.803 -3.753 -46.317 ∗
BMAGNUS(2*)ref 218.621 275.693 383.154 519.876 634.684
BMAGNUS(2*) 3.874 10.829 26.836 42.469 47.968
BMAGNUS(2*)-D 0.385 1.600 4.597 3.615 -3.583

Table 6.3:
aFrom Ref. [5].
bCCSD and CCSD(T) results obtained with PSI4[6].
cFrom Ref.[7]
dFrom Ref. [8]
A comparison of various CC ground-state energies obtained for the cc-pVDZ H2O molecule at
the equilibrium OH bond length R e = 1.84345 bohr and several nonequilibrium geometries
obtained by stretching the OH bonds, while keeping the HOH angle fixed at 110.6. The
spherical components of the d orbitals were used. In post-RHF calculations, all electrons
were correlated. The full CI total energies are given in hartree. The remaining energies
are reported in millihartree relative to the corresponding full CI energies.In Ref. [10], the
authors noticed that there are two SCF solutions, one of which poorly describes the weak
H-O bonding. In the chemistry suite, PSI4[6], we could not force the CCSD routine, and
thus the BCCD routine to use the correct SCF starting reference. This is why there are no
results reported for 3.0Re

description of nuclei around (sub-)shell closures.

In open-shell nuclei, correlations cause the emergence of phenomena like nuclear superflu-

idity or intrinsic deformation. With reference-state constructions, one can attempt to capture

these effects at the mean-field level to some extent, by breaking symmetries either sponta-

neously or explicitly. Pairing correlations can be treated in the Hartree-Fock-Bogoliubov
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Method Re 2Re 3Re 5Re
Full CIa -100.160 300 -100.021 733 -99.985 281 -99.983 293

CCSDb 1.634 6.047 11.596 12.291
CCSDTa 1.0007 1.0032 1.0152 0.431

CCSD(T)b 0.325 0.038 -24.480 -53.183
CCSD(2)T

c 0.229 1.45 2.177 1.443
CR-CC(2,3)c -0.119 0.062 -0.096 -1.005
MAGNUS(2*) 1.581 4.495 0.988 14.249
MAGNUS(2*)[3]-D -0.324 -4.080 -28.661 -31.390
SCF 138.329 206.485 299.388 375.354
BCCDref 139.775 221.576 344.157 454.695*
BCCD 2.012 6.622 10.696 318.710*
BCCD(T) 0.261 0.844 -4.339 317.288*
BMAGNUS(2*)ref 139.475 222.492 355.615 445.704
BMAGNUS(2*) 1.920 7.170 16.971 22.019
BMAGNUS(2*)[3]-D 0.090 1.071 4.659 6.505

Table 6.4:
a From Ref. [10].
b CCSD and CCSD(T) results obtained with PSI4[6].
cFrom Ref. [8]
A comparison of CC and Magnus IMSRG ground-state energies obtained for the equilibrium
geometry of Re = 1.7328 bohr and other nuclear separations of HF with a DZ basis set. In
these post-HF calculations all electrons were correlated. The full CI total energies are given
in hartree. The remaining energies are reported in millihartree relative to the corresponding
full CI energy values.

(HFB) formalism, which is formulated in terms of Slater determinants of fermionic quasi-

particles that are superpositions of particles and holes. Intrinsic deformation will develop

if the single-particle basis is not symmetry restricted, e.g., in an m-scheme formalism, and

rotational symmetry breaking is energetically favored.

An m-scheme IM-SRG or CC calculation may be able to converge to a solution if the

excitation spectrum of the symmetry-broken reference state has a sufficiently large gap, i.e.,

a single dominant configuration. If such a solution is found, one must eventually restore the

broken symmetries through the application of projection methods, which have a long track

record in nuclear physics (see, e.g., [140–151]). At this point, one is no longer dealing with
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a single-reference problem, although the projected states retain an imprint of the original

symmetry-broken (single-)reference states that simplifies practical implementations.

In the domain of exotic neutron-rich nuclei, the single-reference paradigm may also break

down. The complex interplay of nuclear interactions, many-body correlations, and, in the

dripline region, continuum effects, can cause strong competition between configurations with

different intrinsic structures. This manifests in phenomena like the erosion and emergence

of shell closures [22, 23, 44, 152], or the appearance of the so-called islands of inversion (see,

e.g., [153]). Their description requires a true multi-reference treatment.

The Multi-Reference IM-SRG (MR-IM-SRG) is capable of dealing with the aforemen-

tioend scenarios [21, 23, 45]. It generalizes the IM-SRG formalism discussed in this work to

arbitrary correlated reference states, using the multi-reference normal ordering and Wick’s

theorem developed by Kutzelnigg and Mukherjee [154, 155]. The idea of decoupling the

ground state from excitations readily carries over, except that excited states are given by

:a
†
iaj : |Φ〉, :a

†
ia
†
jalak : |Φ〉, . . . ,

and the single-particle states are no longer of pure particle or hole character. The flow

equation formulation of the MR-IM-SRG makes it possible to avoid complications due to

the non-orthogonality and possible linear dependency of these general excitations (see [45]

for more details).

While only one-body density matrices appear in the contractions of the standard Wick’s

theorem, additional contractions that involve two- and higher-body density matrices enter

that encode the correlation content of the reference state. In the MR-IM-SRG framework,

correlations that are hard to capture as few-body excitations of the reference state can be
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Figure 6.1: Ground-state energies of the oxygen isotopes from MR-IM-SRG and other many-
body approaches, based on the NN+3N-full interaction with Λ3N = 400 MeV, evolved to
the resolution scale λ = 1.88 fm−1 (λ = 2.0 fm−1 for the Green’s Function ADC(3) results,
cf. [19]). Black bars indicate experimental data [20]. See Ref. [21] for additional details.

built directly into the reference state.

In a first applications of the MR-IM-SRG framework, spherical, particle-number projected

HFB vacua have been used to compute the ground-state energies of the even oxygen isotopes,

starting from chiral NN+3N forces [21]. This work improved on previous Shell Model [25, 156]

and CC studies [99], that included NN+3N interactions in MBPT or for the latter with

3N forces in a more phenomenological, nuclear-matter based normal ordering. Based on a

Hamiltonian that is entirely fixed in the A = 3, 4 system and consistently evolved to lower

resolution, we found that MR-IM-SRG, various CC methods, and the importance-truncated

NCSM consistently predict the neutron dripline in 24O if chiral 3N forces are included (see

Fig. 6.1), as pointed out in the context of the Shell Model in Ref. [156].

Encouraged by this success, we moved on to the calcium and nickel isotopic chains [23],

where importance-truncated NCSM calculations are no longer feasible. The same family of

chiral NN+3N Hamiltonians that successfully reproduce the oxygen ground-state energies
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Figure 6.2: MR-IM-SRG results for Ca two-neutron separation energies, for chiral NN+3N
interactions with different cutoffs in the 3N sector, and a range of resolution scales from
λ = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols). Black bars indicate experimental
data [20, 22]. See Ref. [23] for additional details.

overestimate the binding energies in these isotopes by several hundred keV per nucleon, in

MR-IM-SRG and CC (also see [86, 87, 98]), as well as the second-order Gor’kov Green’s

Function approach [44]. The revelation of these deficiencies has led to a variety of efforts to

improve on the chiral interactions [47, 157–165].

Contrary to the ground-state energies, chiral NN+3N forces reproduce relative quantities

like the two-neutron separation energies quite well, aside from the exaggerated N = 20

shell closure (Fig. 6.2). In particular, they show signals of sub-shell closures in 52,54Ca, in

agreement with Shell Model calculations based on NN+3N interactions in MBPT [22, 152].

These observations indicate which terms in the chiral input Hamiltonian may be deficient,

and this information can be used in future optimizations.

Ongoing work within MR-IM-SRG relevant to this thesis focuses on overcoming the same

shortcomings the traditional IM-SRG faced, and that the Magnus formulation circumvented

in the single reference IM-SRG methods. Initial inspection indicates that multi-reference

MAGNUS(2) calculations will faithfully reproduce their MR-IM-SRG(2) calculations as it
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did with single reference IM-SRG(2). Further, it appears that one might expect that the

largest missed corrections to MR-MAGNUS(2) would be completely analogous to the MAG-

NUS(2*) and MAGNUS(2*)[3] type corrections. This is of course conjecture and will need

full inspection to verify. One reason we presented ∆E[3] in terms of commutators is that

it avoids the appeal to perturbation theory, which becomes very expensive with a multi-

reference type state. As mentioned above the MR-IM-SRG avoids complications due to the

non-orthogonality and possible linear dependency of excitations through this usage of gener-

alized normal ordering. Thus, it would be expected that we could come up with an analagous

∆E[3] based on leading expression from the multi-reference BCH. This would be in the same

spirit of recent multi-reference perturbation theory based on the driven similarity renormal-

ization group motivated perturbation theory found in [166]. Further, using the factorization

scheme of [167], it would be possible to factorize these expressions in Eq. 5.13 to n6 scaling.

This is only helpful for the multi-reference formalism where there is no distinction between

particle and hole states, as the most expensive term for a closed shell system scales as non
5
u

which is generally larger than n3
on

4
u. Thus it might be possible to correct the MR-IMSRG(2)

to the MR-MAGNUS(2*)[3] without affecting scaling, yielding around CCSD(T) accuracy

even for open shell nuclei.

6.4 Extensions to Excited State Formalism

For open-shell systems, rather than solving the full A-body problem, it is profitable to

follow the Shell Model paradigm by constructing and diagonalizing an effective Hamiltonian

in which the active degrees of freedom are Av valence nucleons confined to a few orbitals

near the Fermi level. Both phenomenological and microscopic implementations of the Shell
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Model have been used with success to understand and predict the evolution of shell structure,

properties of ground and excited states, and electroweak transitions [168–170].

Recent microscopic Shell-Model studies have revealed the impact of 3N forces in predict-

ing ground- and excited-state properties in neutron- and proton-rich nuclei [22, 25, 152, 156,

171–174]. Despite the novel insights gained from these studies, they make approximations

that are difficult to benchmark. The microscopic derivation of the effective valence-space

Hamiltonian relies on MBPT [175], where order-by-order convergence is unclear. Even with

efforts to calculate particular classes of diagrams nonperturbatively [176], results are sensitive

to the HO frequency ~ω (due to the core), and the choice of valence space [25, 171, 172]. A

nonperturbative method to address these issues was developed in [177–179], which generates

valence-space interactions and operators by projecting their full NCSM counterparts into a

given valence space.

To overcome these limitations in heavier systems, the IM-SRG can be extended to derive

effective valence-space Hamiltonians and operators nonperturbatively. Calculations without

initial 3N forces [39] indicated that an ab initio description of ground and excited states for

open-shell nuclei may be possible with this approach.

The utility of the IM-SRG lies in the freedom to tailor the definition of Hod to a specific

problem. For instance, to construct a Shell Model Hamiltonian for a nucleus comprised of Av

valence nucleons outside a closed core, we define a HF reference state |Φ〉 for the core with

Ac particles, and split the single-particle basis into hole (h), valence (v), and non-valence

(q) particle states. Treating all A nucleons as active, i.e., without a core approximation, we

eliminate matrix elements which couple |Φ〉 to excitations, just as in IM-SRG ground-state

calculations [21, 58, 74]. In addition, we decouple states with Av particles in the valence

space, :a
†
v1
. . . a

†
vAv

: |Φ〉, from states containing non-valence states.
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Figure 6.3: Excited-state spectra of 22,23,24O based on chiral NN+3N interactions and com-
pared with experiment. Figures adapted from Ref. [24]. The MBPT results are performed
in an extended sdf7/2p3/2 space [25] based on low-momentum NN+3N interactions, while

the IM-SRG [24] and CC effective interaction (CCEI) [26] results are in the sd shell from
the SRG-evolved NN+3N-full Hamiltonian with ~ω = 20 MeV (CCEI and dotted IM-SRG)
and ~ω = 24 MeV (solid IM-SRG). The dashed lines show the neutron separation energy.
Figure taken from Ref. [27].

After the IM-SRG derivation of the valence-space Hamiltonian, the A-dependent Hamil-

tonian is diagonalized in the valence space to obtain the ground and excited states. For

the oxygen isotopes, a good description of the experimental spectra is found (Fig. 6.3). Re-

cently, these calculations were extended to nearby F, Ne, and Mg isotopes showing excellent

agreement with new measurements in 24F [180] and that deformation can emerge from these

ab initio calculations [41]. Future directions include extending the valence space, which will

give access to the island-of-inversion region and potentially the full sd-shell (and higher)

neutron dripline.

The results being produced by Stroberg and collaborators [41] are already reliant on the

Magnus formulation of the IM-SRG described here; and quickly it is becoming clear that

effective valence space observables will be readily available because of it. This could help
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to answer long-standing questions about a whole host of shell-model phenomenology from

first principles. It is imperative that we inspect the effect of three-body forces, induced and

otherwise, in these effective valence spaces interactions. The generalization of this work’s

findings for ground state decouplings will not generalize easily to the new non-trivial defini-

tion of off-diagonal used to decouple valence spaces, but the path forward is straightforward

and needs to be inspected.
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Chapter 7

Summary and Conclusions

This work investigated the IM-SRG method, which has seen increasing recent use in nu-

clear physics due to its flexibility and relatively gentle scaling with system size. Despite its

amazing success in nuclear physics, its initial failure to successfully treat even fairly simple

chemical systems was more than a little puzzling. As a first step towards solving this puzzle,

I investigated the truncated IM-SRG(2)’s perturbative content. It was found that it under-

counted a class of fourth order quadrupole excitation diagrams that CCSD theory includes

correctly. Being that the two methods seem to have a similar machinery, computational

cost and philosophy, it became one of my goals to find a way to restore this content to the

method so that it would possible to bring the success of the IM-SRG to chemical systems as

well. Incidentally, the outstanding performance of the IM-SRG(2) in nuclear calculations is

related to this undercounting of 4th-order terms, as it mimics the partial cancellations that

occur between these repulsive contributions and attractive triples correlations in CCSD and

CCSDT calculations. In other words, the undercounting of this class of diagrams mimics the

effects of triples correlations for nuclei, which is why the IM-SRG(2) results fall in between

CCSD and CCSDT calculations for all nuclei studied.

It was during this quest to find a way to restore the full counting of these terms that it was

found that the IM-SRG flow equations could be recast using the Magnus expansion. This led

to formulation of the IM-SRG equations which not only alleviated the need for solving the

flow equations with expensive high-order ODE solvers, but also allowed for the generation
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of observables at no additional cost. The first calculations showing these benefits have been

conducted for nuclei and the electron gas, with very promising results. As mentioned, this

formalism has already found its way to several other independent practitioners of the IM-

SRG formalism, particularly those developing valence space interactions, to great success.

With the Magnus formulation in hand, it was then possible to revisit these missing terms

that caused the naive IM-SRG(2) and MAGNUS(2) truncations to fail for chemical systems.

Not only was it possible to restore these terms, yielding the MAGNUS(2*) method, but it

also became possible to borrow insight from CC theory to engineer approximate corrections

that would be due to IM-SRG(3). We have shown that the class of approximations to

IM-SRG(3) dubbed MAGNUS(2*)[3] treats the electron gas, nuclei, and simple chemistry

systems extraordinarily well. With more complicated chemistry systems, these methods do

as well as some approximate non-iterative triples methods in CC theory, but not all. It seems

that the methods ability to map the fully correlated ground state to a mean field picture is

compromised as the correlations become more complicated. It is likely that more nuanced

approximations of IM-SRG(3) or higher may be needed. Regardless, for first results of the

method, the quality of MAGNUS(2*)[3] results seem very promising indeed.

Thus this work has shown how the IM-SRG method has been augmented with the Magnus

formulation to be faster, more accurate, more robust, and more versatile in the treatment of

observables. The outlook for future developments, both in nuclear and chemical systems is

promising, be they in the Brueckner formulation, the multi-reference formulation, or pursuing

new approximations to the IM-SRG(3) when deriving valence interactions within the IM-

SRG. We expect that not only are these endeavors now possible, but they will likely be

accomplished soon.
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Appendix A

Fundamental Commutators

For convenience, we collect the expressions for the fundamental commutators which are

required for the derivation of the IM-SRG flow equations and Wegner-type generators. We

write one-, two-, and three-body operators as

A(1) =
∑
ij

Aij :a
†
iaj : , (A.1)

A(2) =
1

(2!)2

∑
ijkl

Aijkl :a
†
ia
†
jalak : , (A.2)

A(3) =
1

(3!)2

∑
ijklmn

Aijklmn :a
†
ia
†
ja
†
kanamal : , (A.3)

where the two- and three-body matrix elements are assumed to be fully anti-symmetrized.

Single-particle indices refer to natural orbitals, so that occupation numbers are ni = 0, 1,

and we use the notation n̄a = 1− na. We also recall that the commutator of two operators

of rank M and N can only have contributions of rank |M −N |, . . . ,M +N − 1,

[A(M), B(M)] =
M+N−1∑
k=|M−N |

C(k) . (A.4)
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[A(1), ◦]

[A(1), B(1)](1) =
∑
ij

∑
a

:a
†
iaj :

(
AiaBaj −BiaAaj

)
(A.5)

[A(1), B(1)](0) =
∑
ij

AijBji(ni − nj) (A.6)

[A(1), B(2)](2) =
1

4

∑
ijkl

∑
a

:a
†
ia
†
jalak :

{
(1− Pij)AiaBajkl − (1− Pkl)AakBijal

}
(A.7)

[A(1), B(2)](1) =
∑
ij

∑
ab

:a
†
iaj :

{
(na − nb)AabBbiaj

}
(A.8)

[A(1), B(3)](3) =
1

36

∑
ijklmn

∑
a

:a
†
ia
†
ja
†
kanamal :

×
{

(1− Pij − Pik)AiaBajklmn − (1− Plm − Pln)AalBijkamn
}

(A.9)

[A(1), B(3)](2) =
∑
ijkl

∑
ab

:a
†
ia
†
jalak : (na − nb)AabBbijakl (A.10)

159



[A(2), ◦]

[A(2), B(2)](3) =
1

36

∑
ijklmn

∑
a

:a
†
ia
†
ja
†
kanamal :

× P (ij/k)P (l/mn)
(
AijlaBakmn −BijlaAakmn

)
(A.11)

[A(2), B(2)](2) =
1

4

∑
ijkl

∑
ab

:a
†
ia
†
jalak :

{
1

2
(AijabBabkl −BijabAabkl)(1− na − nb)

+ (na − nb)(1− Pij − Pkl + PijPkl)AaibkBbjal

}
(A.12)

[A(2), B(2)](1) =
1

2

∑
ij

∑
abc

:a
†
ia
†
j :
(
AciabBabcj −BciabAabcj

)
(n̄an̄bnc + nanbn̄c) (A.13)

[A(2), B(2)](0) =
1

4

∑
ijkl

ninj n̄kn̄l
(
AijklBklij −BijklAklij

)
(A.14)

[A(2), B(3)](3) =
1

72

∑
ijklmn

∑
ab

:a
†
ia
†
ja
†
kanamal : (1− na − nb)

×
(
P (ij/k)AijabBabklmn − P (l/mn)AabmnBijklab

)
(A.15)

[A(2), B(3)](2) = −1

8

∑
ijkl

∑
abc

:a
†
ia
†
jalak : (nan̄bn̄c + n̄anbnc)

×
(
1− PijPikPjl − Pkl + PikPjl

)
AbcakBaijbcl (A.16)

[A(2), B(3)](1) = −1

4

∑
ij

∑
abcd

:a
†
iaj : (nanbn̄cn̄d − n̄an̄bncnd)AcdabBabijcd (A.17)
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[A(3), ◦]

[A(3), B(3)](3)

=
1

36

∑
ijklmn

∑
abc

:a
†
ia
†
ja
†
kanamal :

×
{

1

6
(nanbnc + n̄an̄bn̄c)(AijkabcBabclmn −BijkabcAabclmn)

+
1

2
(nanbn̄c + n̄an̄bnc)P (ij/k)P (l/mn)(AabkcmnBcijabl − AcjkabnBiablmc)

}
(A.18)

[A(3), B(3)](2)

=
1

4

∑
ijkl

∑
abcd

:a
†
ia
†
jalak :

×
{

1

6
(nan̄bn̄cn̄d − n̄anbncnd)(AaijbcdBbcdakl − AbcdaklBaijbcd)

+
1

4
(n̄an̄bncnd − nanbn̄cn̄d)(1− Pij)(1− Pkl)AabicdlBcdjabk

}
(A.19)

[A(3), B(3)](1)

=
1

12

∑
ij

∑
acde

:a
†
iaj : (nanbn̄cn̄dn̄e + n̄an̄bncndne)(AabicdeBcdeabj −BabicdeAcdeabj)

(A.20)

[A(3), B(3)](0)

=
1

36

∑
ijklmn

(ninjnkn̄ln̄mn̄n − n̄in̄j n̄knlnmnn)AijklmnBlmnijk (A.21)
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Appendix B

IM-SRG(3) Flow Equations

The IM-SRG(3) flow equations can be derived using the fundamental commutators from

Appendix A. The permuation symbols Pij , P (ij/k), and P (i/jk) have been defined in

Eqs. (3.11), (3.95), and (3.96). The normal-ordered Hamiltonian is given by

H(s) ≈ E(s) + f(s) + Γ(s) +W (s) . (B.1)

The particle ranks of the individual contributions of H and the generator η are obvious from

the indices of the associated matrix elements.

d

ds
E =

∑
ab

(na − nb)ηabfba +
1

2

∑
abcd

ηabcdΓcdabnanbn̄cn̄d

+
1

18

∑
abcdef

ηabcdefWdefabcnanbncn̄dn̄en̄f (B.2)
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d

ds
fij =

∑
a

(1 + Pij)ηiafaj +
∑
ab

(na − nb)(ηabΓbiaj − fabηbiaj)

+
1

2

∑
abc

(nanbn̄c + n̄an̄bnc)(1 + Pij)ηciabΓabcj

+
1

4

∑
abcd

(nanbn̄cn̄d)(ηabicdjΓcdab −Wabicdjηcdab)

+
1

12

∑
abcde

(nanbn̄cn̄dn̄e + n̄an̄bncndne)(ηabicdeWcdeabj −Wabicdeηcdeabj) (B.3)

d

ds
Γijkl =

∑
a

{
(1− Pij)(ηiaΓajkl − fiaηajkl)− (1− Pkl)(ηakΓijal − fakηijal)

}
+

1

2

∑
ab

(1− na − nb)(ηijabΓabkl − Γijabηabkl)

−
∑
ab

(na − nb)(1− Pij)(1− Pkl)ηbjalΓaibk

+
∑
ab

(na − nb)
(
ηaijbklfba −Waijbklηba

)
+

1

2

∑
abc

(nan̄bn̄c + n̄anbnc)(1− PikPjlPij − Pkl + PikPjl)

× (ηaijbclΓbcak −Waijbclηbcak)

+
1

6

∑
abcd

(nan̄bn̄cn̄d − n̄anbncnd)(ηaijbcdWbcdakl − ηbcdaklWaijbcd)

+
1

4

∑
abcd

(n̄an̄bncnd − nanbn̄cn̄d)(1− Pij)(1− Pkl)ηabicdlWcdjabk (B.4)
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d

ds
Wijklmn =

∑
a

{
P (i/jk)ηiaWajklmn − P (l/mn)ηalWijkamn

}
−
∑
a

{
P (i/jk)fiaηajklmn − P (l/mn)falηijkamn

}
+
∑
a

P (ij/k)P (l/mn)(ηijlaΓakmn − Γijlaηakmn)

+
1

2

∑
ab

(1− na − nb)(P (i/jk))(ηijabWabklmn − Γijabηabklmn)

− 1

2

∑
ab

(1− na − nb)(P (lm/n))(ηablmWijkabn − Γablmηijkabn)

−
∑
ab

(na − nb)P (i/jk)p(l/mn)(ηbialWajkbmn − Γbialηajkbmn)

+
1

6

∑
abc

(nanbnc + n̄an̄bn̄c)(ηijkabcWabclmn −Wijkabcηabclmn)

+
1

2

∑
abc

(nanbn̄c + n̄an̄bnc)P (ij/k)P (l/mn)

× (ηabkcmnWcijabl − ηcjkabnWiablmc) (B.5)
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Appendix C

Diagram Rules

For convenience, we briefy summarize the rules for interpreting the antisymmetrized Gold-

stone and Hugenholtz diagrams that appear in the perturbative discussion of the IM-SRG

in Sec. 3.5. Detailed derivations can be found in standard texts on many-body theory, e.g.,

in Ref. [16, 117, 120], as well as in Refs. [175, 181, 182], which are particularly useful for

diagrammtic treatments of effective nuclear Hamiltonians.

1. Solid lines represent single-particle states (indices), with up- and downward pointing

arrows indicating particle (ε > εF ) and hole states (ε ≤ εF ), respectively.

2. Interaction vertices are represented as dots in Hugenholtz diagrams,

〈i| f |j〉 =

j

i

, 〈ij|Γ |kl〉 =

k l

i j

, 〈ijk|W |lmn〉 =

l m n

i j k

, (C.1)

where the two- and three-body matrix elements are fully antisymmetrized. Throughout

this work, we will also use the short-hand notation fij = 〈i| f |j〉 ,Γijkl = 〈ij|Γ |kl〉,

etc.

For the discussion of the effective one- and two-body Hamiltonians, we switch from

Hugenholtz diagrams to antisymmetrized Goldstone diagrams for clarity (see, e.g.,

Ref. [16]). To this end, the Hugenholtz point vertices are stretched into dashed inter-
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action lines,

〈i| f |j〉 =

j

i

, 〈ij|Γ |kl〉 =

k l

i j

, 〈ijk|W |lmn〉 =

l m n

i j k

. (C.2)

Note that the matrix elements are still antisymmetrized: Each of the diagrams shown

here represents all allowed exchanges of single-particle lines/indices in the bra and ket.

This is reflected in the rules for prefactors that we adopt in the following [16].

3. Assign a factor 1/2nd for nd equivalent pairs, i.e., pairs of particle or hole lines that

start at the same interaction vertex and end at the same interaction vertex. Likewise,

assign 1/6nt for nt equivalent triples connecting the same interaction vertices.

4. Assign a phase factor (−1)nl+nh+nc+nexh to each diagram, where nl is the number of

closed fermion loops, nh the total number of hole lines, nc is the number of crossings of

distinct external lines, and nexh the number of hole lines continuously passing through

the whole diagram (i.e., nexh = 0 for energy diagrams).

5. For each interval between interactions with particle lines p1, . . . , pM and hole lines

h1, . . . , hN multiply the expression with the energy denominator

1

Ω +
∑N
i=1 εhi −

∑M
i=1 εpi

, (C.3)

where Ω is the unperturbed energy of the state entering the diagram relative to the

reference state, reading from bottom to top (e.g., Ω = 0 for energy diagrams). Through-

out this work, the energies are given by the diagonal matrix elements of the one-body
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part of the Hamiltonian εi = fii; for Hartree-Fock reference states, f is diagonal, of

course. The sum over intermediate particle and hole lines in the denominator is the

unperturbed energy of the excited MpNh state in a Møller-Plesset type perturbation

theory with respect to the reference state. In the Epstein-Nesbet case, it is replaced

with the diagonal matrix element of the Hamiltonian in the same state, i.e.,

〈Φ| :a†hN . . . a
†
h1
apM . . . ap1 : H :a

†
p1
. . . a

†
pM

ah1
. . . ahN

: |Φ〉 − E0

=
M∑
i=1

εpi −
N∑
i=1

εhi + additional terms , (C.4)

where E0 = 〈Φ|H |Φ〉.

6. Sum freely over all internal single-particle indices.

Let us demonstrate the use of the diagram rules for a few examples. For the third-order

particle-ladder diagram,

p1 p2

p3 p4

h1 h2
=

1

8

∑
p1p2p3p4
h1h2

Γh1h2p3p4
Γp3p4p1p2Γp1p2h1h2

(εh1
+ εh2

− εp1 − εp2)(εh1
+ εh2

− εp3 − εp4)
. (C.5)

Here nc = nexh = 0, nh = 2, and the number of closed fermion loops is nl = 2, namely

p1 → p3 → h1 → p1 and p2 → p4 → h2 → p2. For the particle-hole diagram, we have

h1 p1

h3 p3

p1 h2
= −

∑
p1p2p3
h1h2h3

Γh3h2p1p3
Γh1p3h3p2

Γp1p2h1h2

(εh1
+ εh2

− εp1 − εp2)(εh2
+ εh3

− εp1 − εp3)
, (C.6)
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with nc = nexh = 0, nh = 3, and two closed loops (nl = 2), p1 → h3 → h1 → p1 and

p2 → p3 → h2, giving a negative sign. Since the interaction vertices are connected by one

particle and one hole line each, nd = 0, and the pre-factor is 1.

For the second-order effective Hamiltonian, diagram f4 in Fig. 3.12 translates into

h p

p′ p′′ h′
=

1

2

∑
p′p′′h′

Γph′p′p′′Γp′p′′hh′

εh + εh′ − εp′ − εp′′
. (C.7)

Reading from bottom to top, we have Ω = 0 just like in an energy diagram. To determine

the phase, we note that there is one fermion loop (p′′ → h′ → p′′), there are two hole

lines, one of which is external and passing through the diagram via h → p′ → p. Thus

nl = 1, nh = 2, nexh = 1, and nc = 0, so the phase factor is +1. There is one pair of

equivalent particle lines, nd = 1, giving rise to the pre-factor 1
2 .

As an example for a second-order two-body interaction, we consider diagram Γ3 in

Fig. 3.13:

p3

p1 h

h′ h′′

p2

=
1

2

∑
h′h′′

Γp1p2h′h′′
Γh′h′′p3h

εh′ + εh′′ − εp1 − εp2
, (C.8)

where nl = nc = 0, nh = 3, and there is one external hole line (nexh = 1) passing through

the diagram, h → h′′ → p, giving a phase factor +1. There is one pair of equivalent hole

lines (nd = 1), and the starting energy is Ω = p3, which explains the symmetry pre-factor

and energy denominator, respectively.
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Our final example is an induced three-body interaction, diagram W3 in Fig. 3.14. The

expression is

p1 h1 p2 h2 p3 h3

h′
= −

∑
h′

Γp1p2h1h
′Γh′p3h3h3

εh1
+ εh′ − εp1 − εp2

, (C.9)

where Ω = 0, the phase factor is −1 because nl = nc = 0, nh = 4, nexh = 3. Due to the lack

of equivalent lines, the overall pre-factor of the diagram is 1.
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[20] M. Wang, G. Audi, A. Wapstra, F. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer,
Chin. Phys. C 36, 1603 (2012).

[21] H. Hergert, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett. 110,
242501 (2013).

[22] F. Wienholtz, D. Beck, K. Blaum, C. Borgmann, M. Breitenfeldt, R. B. Cakirli,
S. George, F. Herfurth, J. D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea,
J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis,
J. Stanja, R. N. Wolf, and K. Zuber, Nature 498, 346 (2013).

[23] H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci, J. Langhammer, and
R. Roth, Phys. Rev. C 90, 041302 (2014).

[24] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer,
and R. Roth, Phys. Rev. Lett. 113, 142501 (2014).

[25] J. Holt, J. Menéndez, and A. Schwenk, Eur. Phys. J. A 49, 1 (2013).

[26] G. R. Jansen, J. Engel, G. Hagen, P. Navratil, and A. Signoracci, Phys. Rev. Lett.
113, 142502 (2014).

[27] K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk, Annual Review of Nuclear and
Particle Science, Ann. Rev. Nucl. Part. Sci. (2015).

[28] K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955).

[29] H. A. Bethe, Phys. Rev. 103, 1353 (1956).

[30] J. Goldstone, Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 239, 267 (1957).

[31] H. F. S. III, Quantum Chemistry: The Development of Ab-Initio Methods in Molecular
Electronic Structure Theory (Dover Publications Inc., 2004).

[32] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).

[33] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010).

[34] H.-W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys. 85, 197 (2013).

[35] A. B. Balantekin, J. Carlson, D. J. Dean, G. M. Fuller, R. J. Furnstahl, M. Hjorth-
Jensen, R. V. F. Janssens, B.-A. Li, W. Nazarewicz, F. M. Nunes, W. E. Ormand,
S. Reddy, and B. M. Sherrill, Mod. Phys. Lett. A 29, 1430010 (2014).

[36] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and
R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).

[37] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navrátil, Phys. Rev. Lett. 107,
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Phys. Rev. C 91, 024003 (2015).

[165] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K. E. Schmidt, and
A. Schwenk, (2015), arXiv:1509.03470 [nucl-th] .

[166] C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015), pMID:
26574413.

[167] P. Constans, P. Y. Ayala, and G. E. Scuseria, Chem. Phys. 113 (2000).

[168] B. A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001).

[169] E. Caurier, G. Mart́ınez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, Rev. Mod.
Phys. 77, 427 (2005).

[170] T. Otsuka, Phys. Scripta 2013, 014007 (2013).

[171] J. D. Holt, T. Otsuka, A. Schwenk, and T. Suzuki, J. Phys. G 39, 085111 (2012).

[172] J. D. Holt, J. Menéndez, and A. Schwenk, Phys. Rev. Lett. 110, 022502 (2013).

[173] J. D. Holt, J. Menéndez, and A. Schwenk, J. Phys. G 40, 075105 (2013).

[174] A. T. Gallant, J. C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, A. Lennarz,
D. Robertson, V. V. Simon, A. Chaudhuri, J. D. Holt, A. A. Kwiatkowski, E. Mané,
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